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Abstract

This work considers the problem of finding optimal replacement policies that

minimize the expected total cost of maintaining a satellite constellation. The prob-

lem is modeled using discrete-time Markov decision processes to determine the re-

placement policy by allowing the satellite constellation to be in one of a finite number

of states at each decision epoch. The constellation stochastically transitions at each

time step from one state to another as determined by a set of transition probabilities.

At each decision epoch, a decision maker chooses an action from a set of allowable

actions for the current system state. A cost associated with each possible action

is determined by the number of satellites purchased, launched, or held in storage,

as well as the operational capability of the constellation. The system is evaluated

for a given time horizon using the standard Policy Evaluation Algorithm of Markov

decision processes (stochastic dynamic programming) to determine the optimal re-

placement policy and the minimum expected total cost. Example problems using

notional data are presented to demonstrate the solution procedures. Sensitivity anal-

ysis of problem parameters is performed to investigate their impact on the minimum

expected total cost of operating the constellation over a specified time horizon.

ix



OPTIMAL REPLACEMENT POLICIES

FOR SATELLITE CONSTELLATIONS

1. Introduction

1.1 Background

The United States Air Force maintains a wide variety of satellite constellations

used for such purposes as navigation, communications, weather, early warning, and

intelligence collection. As the satellites that compose these constellations deteriorate

and tend towards failure, their replacement is essential. Satellites that have been in

service for any length of time suffer some amount of degradation, but most are still

useful and able to accomplish their mission to varying degrees, until the degradation

is substantial enough that the satellite is deemed unable to satisfactorily accomplish

the mission. Ideally, each satellite would be replaced just prior to its failure to

prevent degradation of the constellation’s ability to perform its mission, while also

maximizing the useful life of each satellite. Degrading the capability of a constellation

to perform its mission can have grave consequences to national security, especially

considering the mission of the constellation, the state of world affairs, and military

actions in progress.

One way to ensure a replacement is available in the event of satellite failure

is to maintain spare satellites on-orbit. However, satellites are extremely expensive

to build and launch making this approach unrealistic except for the most critical

assets. The financial cost of maintaining a satellite constellation must be weighed

against the “cost” in terms of national security to have a loss in mission capability

due to an on-orbit failure of a satellite when no replacement is available. It is

therefore desirable to prescribe a satellite replacement policy which balances the
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need to maintain constellation mission capabilities and avoid undue replacement

costs by minimizing the monetary and security costs to the nation over the lifetime

of the satellite system.

In a national defense context, finding such an optimal replacement policy is

important to the United States government and its citizens because the policy min-

imizes the cost of providing for the security of the nation. Optimal satellite re-

placement policies are also important to companies in the private sector, such as

telecommunications or satellite television providers. While a company may not be

directly concerned with national security, customer satisfaction and good will are

important performance metrics for the survival of any company. Competitive firms

desire to minimize the overall costs while maintaining a high level of customer sat-

isfaction.

The money saved from implementing such policies can be used to make im-

provements to the satellite constellation’s capabilities or robustness, or the money

could be directed to different projects altogether, making some previously unfunded

or underfunded programs possible. Monetary savings on government systems could

also be passed along to taxpayers in the form of tax breaks. In the case of a private

firm, savings can be passed to investors in the form of dividends or to customers in

the form of lower prices, creating a competitive advantage for the firm.

Research in the areas of optimal replacement policies and the modeling of satel-

lite constellations are relevant to the problems presented here. Optimal replacement

problems have been studied extensively in the stochastic operations research liter-

ature. Solutions for general mechanical or electrical systems are often found using

renewal theory. Open source literature on the modeling of satellite constellations,

however, is much more sparse. Only a few journal articles have been published

addressing different approaches to modeling satellite constellations.

Problems involving the modeling of satellite constellations generally use Monte-

Carlo simulation to determine actions for maintaining constellations, predicting
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satellite reliability, or assessing satellite constellation availability [15] [21] [23]. The

models themselves are sometimes set up purely as simulation models based on satel-

lite failure times or the satellite constellations are modeled using a network of queues.

In both cases, Monte-Carlo simulation is generally used to analyze the model due to

issues of complexity. When using Monte-Carlo simulation, one run of the simulation

results in one data point of information, or one possible outcome, of all the possible

outcomes that could occur in the experiment. To appropriately interpret the results,

the experiment must be replicated numerous times and the results subjected to care-

ful statistical analysis to make the correct inferences regarding system performance.

Monte-Carlo simulation can be used to compare two or more models, but does not

allow the user to determine if an evaluated model is optimal. For this reason, an

analytical solution is preferred because such a solution can be shown to be optimal.

This thesis approaches the problem of finding an optimal satellite replacement

policy from an analytical point of view. The specific approach taken to solve the

problem is to analytically model satellite constellations and then use Markov de-

cision processes to determine the optimal replacement policy of the satellites. In

this context, optimal means the minimum expected total cost over the time-horizon

evaluated. Using Markov decision processes to model the stochastic evolution of

a deteriorating satellite constellation is useful because, for the given inputs, they

provide a provably optimal replacement policy under certain assumptions. Such an

optimal policy avoids a potential source of error because there is no need to make

inferences from the model outputs regarding the optimality of the solution.

1.2 Problem Definition and Methodology

In this thesis, a satellite constellation is stochastically modeled and analyzed

to find a satellite replacement policy which minimizes the expected monetary and

opportunity costs (e.g. national security costs and costs associated with gain or loss

of customer satisfaction) of maintaining the constellation. While certain budgetary
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constraints may be imposed on the implementation of a policy (e.g. a maximum

annual budget) the optimal policy found herein does not take into account budgetary

constraints and is useful for establishing budgets or lobbying for funding levels that

minimize costs over the lifetime of the system.

The research objectives of this thesis are to analytically model satellite constel-

lations, to find optimal satellite replacement policies for maintaining constellations,

and to study how changes to model parameters affect the minimum expected to-

tal cost of maintaining a constellation. The satellite constellations are analytically

modeled using stochastic processes, specifically discrete-time Markov chains in the

context of Markov decision processes. Optimal replacement policies are found by

using the policy evaluation algorithm of Markov decision processes. Sensitivity anal-

ysis is performed to investigate the impact of model parameters on the minimum

expected total cost of maintaining a constellation.

The proposed models are created using finite-horizon Markov decision pro-

cesses. The optimal replacement policy for minimizing the many costs associated

with maintaining a satellite constellation is found by using a policy evaluation algo-

rithm. The policy obtained using this technique is optimal for minimizing the total

expected cost of maintaining the constellation, subject to the imposed assumptions.

The value of the minimum expected total cost is also provided by the policy evalu-

ation algorithm and is the same value that can be derived by solving the optimality

equations along with the boundary condition. The fact that the value from the pol-

icy evaluation algorithm agrees with the results from the optimality equations shows

that the policy evaluation algorithm does indeed result in the optimal value of the

replacement problem.

The main contribution of this research is to provide a sound foundation upon

which a more detailed analytical analysis can be based in the future. Establishing

an analytical model for satellite replacement is a significant contribution because it

allows optimal replacement policies to be found under some mild problem assump-
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tions. Moreover, the analytical approach to the problem circumvents the need for

costly and time-consuming simulation studies. The resulting policies are also use-

ful in determining budget inputs because the expected cost per time period can be

determined. This thesis also provides a means in which sensitivity analysis may be

easily performed.

1.3 Thesis Outline

Chapter 2 provides a review of the literature addressing similar problems.

Chapter 3 provides an overview of Markov decision processes and presents condi-

tions for the existence of an optimal replacement policy over a finite time horizon.

Chapter 4 presents notional numerical examples demonstrating the applicability of

these models. Chapter 5 reviews the contributions and limitations of this work and

discusses recommendations and future research directions.

1-5



2. Literature Review

There are two main areas of literature that are relevant to this problem. The

first area is that of optimal replacement for degrading systems. Optimal replace-

ment problems have been studied a great deal in the stochastic operations research

literature. The second area is the mathematical modeling of satellite constellations.

Three specific models will be reviewed in detail.

2.1 Optimal Replacement Models

Survey papers by McCall [27], Pierskalla and Voelker [34], and Valdez-Flores

and Feldman [38] review the optimal replacement literature from the early 1950s

through the late 1980s. These papers provide a good summary of optimal replace-

ment literature and models through that time.

A seminal work by Barlow and Proschan [6] introduces many single-unit mod-

els. Much of the later literature is based on this work. Barlow and Proschan [6]

describe an array of optimal maintenance policies, including age replacement models

which assume that spares are always available. Nakagawa and Osaki [32] extend this

model to allow for the case where a spare is not always available. They model the

lead time required to obtain a replacement as a random variable. In their model,

Nakagawa and Osaki order the new spare immediately after each replacement. By

ordering the spare immediately, the spare may arrive well before the replacement

takes place. Storing the spare from the time it arrives until the replacement takes

place results in a holding cost which can be quite expensive. It, therefore, may be

better to delay ordering the replacement. Mine and Kawai [28] address the case of

delaying the order of the replacement to minimize the holding cost.

Barlow and Proschan ([6], page 18), also present another topic that is important

to the development of the model herein. They define interval reliability as the

probability that the system will continue to operate from some time to some specified
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time in the future. The difference in times is the interval. Interval reliability is an

important concept to the satellite replacement models presented in Chapter 3.

Mine and Nakagawa [29] also do work on interval reliability, specifically when

the distribution is exponential. They use a renewal theory approach to find a pre-

ventative maintenance policy that maximizes the interval reliability of the system

under evaluation. In this work, maintenance or a repair can be considered analogous

to a replacement in the satellite problem. This is allowed because the authors use a

repair to correct a system failure in the same way that a replacement would correct

a failure.

Aven and Bergman [3], Dekker [13], and Aven and Dekker [4] present work on

a general structure for optimal replacement problems. These general frameworks are

based on the application of renewal theory. The goal in this approach is to determine

the optimal replacement time with which to optimize the expected total cost of the

system.

Aven and Bergman [3] formally describe both a continuous-time and a discrete-

time structure. They claim that their structure can be applied to a large class of

replacement models. The authors present a general approach to minimizing the ex-

pected total discounted cost as well as the long-run expected average cost per unit

time. This general approach involves conditions and assumptions that are indepen-

dent of specific problems. Both the continuous-time and the discrete-time frame-

works are developed by thorough definitions of the probability space and character-

istics of the applicable measure processes, such as the failure and repair/replacement

processes. A derivation of the optimal stopping time is provided.

Dekker [13] deals largely with maintenance activities and allows penalty cost

functions to be derived for deviating from the optimal maintenance interval. The

author claims that the penalty costs can be used to set priorities for action selection.

He provides penalty functions for short-term, long-term, and permanent shifts from
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the optimal policy. It is also claimed that the penalty costs can assist with production

planning.

Aven and Dekker [4] extend the types of models addressed by Dekker [13].

This paper is also based on renewal theory. The authors state that the framework

presented in this paper is a simpler version of the framework presented in [3]. After

presenting their general framework and assumptions, the authors offer examples

of how to apply the framework to several types of problems. Some of the problems

addressed are opportunity-based age replacement problems, opportunity-based block

replacement problems, and minimal repair models.

The literature discussed thus far primarily deals with single-unit systems.

These problems were largely addressed by the use of renewal theory. The body of lit-

erature on multi-unit models, although not as developed as literature on single-unit

models, has been growing since the mid-1980’s. Analytical modeling of multi-unit

systems typically relies on the application of dynamic programming. Literature on

optimal replacement policies of multi-unit non-repairable systems is limited, possibly

due to the dimensionality of the state space for such problems. The following articles

address multi-unit optimal replacement models.

Ben-Ari and Gal [7] and Gal [20] present a multi-unit model for which an

optimal replacement policy is found. The model is complicated by the fact that there

is an interaction between the items in the system. Gal [20] gives, as an example of

this type of interaction, the case in which a lead time for a replacement order is

incorporated. Ben-Ari and Gal [7] use a dynamic programming approach to find

an optimal replacement policy. To circumvent the state space explosion of such

problems, the method combines computer simulation and dynamic programming.

This method is called the Parameter Iteration Method to differentiate it from the

Value Iteration Method commonly used in dynamic programming.

While Ben-Ari and Gal [7] present an application of the Parameter Iteration

Method, the focus of Gal [20] is the method itself. The Parameter Iteration Method
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method was first introduced by Gal [19]. The method is applied when, at each

time period t, the optimal value (see Section 3.1 for a review of Markov decision

processes/stochastic dynamic programming) is approximated by a function, from a

user-determined set of admissible functions, that depends on parameters of the state

variables [20].

This optimal return function is evaluated, for each time period, by performing

dynamic programming recursions at enough states to determine the function. Gal

[20] claims that, for Markov decision problems with a small amount of uncertainty,

the parameter iteration fits well with the use of simulation. Furthermore, he states

that a policy considered to be “reasonable” is used to simulate the sequence of

states followed by some number of realizations of the policy. The return function is

then approximated by one of the admissible functions for the states visited by these

realizations. The approximations are accomplished by beginning in the final time

period being evaluated and working backwards toward the initial time period. Each

iteration of the this process results in a new policy that is an improvement over the

previous policy. New realizations are then simulated using the new policy and the

process is repeated until the return function converges.

Gal [19] points out the Parameter Iteration Method is not automatic and re-

quires that the user have a good understanding of the system being evaluated in

order to determine the class of admissible functions for the return function. Ben-Ari

and Gal [7] refer to this approximation to the optimal return policy as a practical

solution to the problem.

Flynn, et al. [17] present an optimal replacement model for a multi-component

reliability system. The goal of their model is to find the optimal balance between

the cost of component replacement and the cost of system failure. At the beginning

of each time period, a decision is made whether to replace any failed components.

Replacement components are assumed to always be available. The problem is for-

mulated as a stochastic dynamic program (Markov decision process). To address
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the problem of state space explosion, the authors restrict their attention to critical

component policies which allow the replacement of a system component only if the

component has failed and is considered to be critical for the operation of the system.

Their model assumes that the components are either operational or failed and evalu-

ate the system over an infinite time horizon. The model presented by these authors

is a multi-unit model that does not mandate the replacement of failed components.

In this thesis, a constellation is analogous to the system and a satellite is analogous

to a component. The models in Chapter 3, however, do not assume that the sys-

tem (constellation) itself fails when a component (satellite) is failed, but instead a

penalty cost is charged whenever components of the systems are failed, and thus,

performance is degraded.

Chung and Flynn [10] extend their earlier study to find optimal replacement

policies for k-out-of-n systems. A k-out-of-n system is one which consists of n com-

ponents and requires at least k of the components to be operational for the system

to function. This paper uses the same assumptions as Flynn et al [17] expect the

problem is extended to find the optimal replacement policy when k-out-of-n inde-

pendent components must function for the system to be operational. This optimal

replacement policy is found using a dynamic programming formulation.

Chung and Flynn [11] improve on that work by presenting a more efficient

branch-and-bound algorithm that finds optimal replacement polices for k-out-of-n

systems. Flynn and Chung [18] continue their work in this area by developing a

branch-and-bound technique for consecutive k-out-of-n systems. For a consecutive

k-out-of-n system at least k consecutive components must be operational (the oper-

ational components are not separated by any failed components) for the system to

function.
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2.2 Satellite Constellation Models

Jacobs et al. [23] explain the software program Operational Constellation

Availability and Reliability Simulation (OSCARS). OSCARS is used by Air Force

Space Command to analyze and compare satellite constellation replenishment strate-

gies (also known as policies). OSCARS uses Monte-Carlo simulation to estimate

when satellites need to be launched to maintain a specified number of operational

satellites.

OSCARS has two main functions: Generate Launch Schedule and Evaluate

Launch Schedule. The Generate Launch Schedule function generates a launch sched-

ule based on data from several databases containing information about existing satel-

lites, planned launches, and the inventory levels of both replacement satellites and

the boosters needed to launch them. This function identifies how many satellites

need to be launched and when they should be launched to maintain a constellation

with the specified number of operational satellites. The Evaluate Launch Schedule

function evaluates a generated launch schedule to determine how many operational

satellites are available, at any specified time, when following the schedule produced

by the Generate Launch Schedule function. The number of operational satellites

maintained by following the generated schedule is compared to the required number

of operational satellites to determine the performance of the schedule being evalu-

ated.

The events in OSCARS are driven by satellite failures. OSCARS uses satellite

failure distributions specified by the user to estimate when a satellite failure will

occur. The satellite failure distribution can be represented by a single probability

distribution or it can be modeled by allowing separate probability distributions to

represent the phases (Infant Mortality, Useful Life, and Wearout) of the satellite’s

lifetime. The Infant Mortality phase is modeled by a user prescribed probability of

infant mortality. According to Jacobs et al. [23] the infant mortality “represents the
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percent of time that the satellite will fail between its launch date and the end of the

first month of operation.”

The Useful Life phase of the failure distribution is modeled by the Weibull

distribution. The age of an existing satellite at the beginning of the simulation

is taken into account by OSCARS. This age determines where the satellite is in

relation to the failure curves. Jacobs et al. [23] state that “The Weibull distribution

has historically been selected to model satellite failures.”

The Wearout phase is modeled in four different ways. The first way is described

as a fixed cutoff or cliff where the satellite failure occurs either before or at a specified

date. The other ways the Wearout phase is implemented includes the use of the

Rayleigh distribution, the normal distribution, and the normal distribution with a

fixed cutoff date, which is a combination of the normal distribution and the fixed

cutoff methods.

Outputs from OSCARS are divided by the function that produced them. The

main output of the Generate Launch Schedule function is Launch Need Date. A

Launch Need Date is a date such that, in a specified percentage of the simulation

replications a launch was required by that date. For example, if in 10 percent of the

replications, a launch was required by some date, that date would be a 10 percent

Launch Need Date. The Generate Launch Schedule function also produces statistics

on satellite and booster inventory demands. The purpose of the Evaluate Launch

Schedule function is to determine how many operational satellites will be available

during the period of time covered by the simulation. The main outputs of this

function are a graph of the median number of operational satellites available during

the simulation and a graph of the probability of having at least the required number

of satellites at any given time during the simulation.

Hansen [21] makes reliability predictions for satellite constellations by focusing

on satellite subsystems. Hansen states that reliability for electronic components is

normally defined as a probability of “success”, or the probability that the system
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will perform its intended function for some given period of time. He then raises

the point that the definition of a success needs to be clarified when talking about

satellite constellation reliability. Satellites are built with many redundancies because

most satellites cannot be repaired once they are launched. This makes the definition

of success more complicated. Should a success be when all components are working

or a certain function is being accomplished? In this thesis, reliabilities consider the

functionality of a system. It is left to the reader to determine what method is most

appropriate for their purposes.

Hansen [21] discusses the assumption adopted from MIL-HDBK-217 , that the

lifetime of all satellite subsystem components are distributed exponentially, is also

discussed. Hansen [21] claims this assumption does not accurately represent the

actual reliability of the components. Instead he offers a five parameter distribution

that is a linear combination of an exponential distribution used to model infant

mortality of a component and a three parameter Weibull distribution that is used

to model the remaining lifetime of the component. Hansen [21] claims this five pa-

rameter distribution is a realistic alternative to the exponential component lifetimes

assumed above.

Hansen [21] also provides an example of the redundancy measures for a sub-

system of a satellite. He claims that analytically determining the reliability of sub-

system functions is extremely complicated, if not impossible, and uses Monte-Carlo

simulation to carry out the analysis of subsystem reliabilities.

Ereau and Saleman [15] study the availability of satellite constellations by

modeling the constellations using stochastic Petri nets. The authors claim that

availability analysis during the development phase of a satellite constellation provides

important information that can be used for system definition, such as determining

optimal placement of the satellites and maintenance strategies. They also claim that

availability analysis helps minimize global costs. The authors state that the use of
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Petri nets is better able to handle the combinatoric explosion of the number of states

than other types of models.

The authors state that classic methods, such as Reliability Block Diagrams and

Fault Trees, are good at representing dependency links between system components,

but are poor for modeling complex processes, such as resource sharing. They go on to

say that Markov chains can be used to model any type of finite-state process by com-

pletely enumerating the system states. They claim that, for satellite constellations,

the state space grows quickly and this method become intractable. This problem is

handled in Chapter 3 by making reasonable assumptions to limit the state space of

the systems being studied. The speed and memory capabilities of modern computers

helps minimize this concern. Of course, it is always possible to make a model that is

too large for current computer capacities. For most reasonably sized constellations

(constellations with as many satellites as Iridium or the proposed Teledesic system

are most likely beyond the range of reasonably sized), the state space of the problem

can be held in check by these assumptions.

The model of Ereau and Saleman [15] is based on a Low Earth Orbit (LEO)

constellation with p orbital planes that have k out of n satellites each. The system

has both a space segment and ground logistic support segment. The ground segment

has c independent production lines that each produce k satellites. The ground seg-

ment also has capacity to store s sets of one launcher and k satellites. There are l

independent launching areas used to launch the satellites. The space segment allows

both nominal (active) and standby satellites to be in orbit.

The model is considered to begin with no satellites in orbit and undergoes

an initialization phase to get the satellites into orbit. Each launcher is assumed

to launch k satellites and so it takes at least p launches to populate each orbital

plane. In the event of a launch failure, a new launcher and set of k satellites must be

ordered, thus delaying the completion of the initialization phase. During this phase

no standby satellites are launched into orbit.
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To simplify the modeling process, Ereau and Saleman [15] use the same model

for initializing the system as well as maintaining the constellation. This results in k

satellites being launched in every replacement launch. When the first satellite fails,

k satellites are launched into that orbital plane. One of the satellites will serve as a

replacement while the other k− 1 satellites are put into standby mode. As satellites

in that orbital plane continue to fail, the standby satellites are activated to replace

the failed satellites. When no more standby satellites remain in that plane, the next

satellite failure of the plane will result in k more satellites being launched into that

plane. While satellites are on orbit in standby mode they are subject to a satellite

failure rate that is lower than the failure rate of the active satellites.

The model is implemented by using a global Petri net made up of smaller Petri

nets for the different model segments. For example, there is a separate network for

each orbital plane. These individual networks model each state and transition that

can occur to the satellites. The ground segment is also made up of its own network.

Another network takes care of interfacing the ground and space segment networks.

Ereau and Saleman [15] explain, that to be used for quantitative analysis, Petri

nets must be extended to incorporate the use of time. This extension of Petri nets is

called Stochastic Timed Petri Nets. Analytical results with this type of network are

possible, but the issue of state space explosion still exists. The authors state that

if analytical methods were used, the p orbit plane models would have more than

160, 000 states for an example that has three orbital planes each with two active

satellites and a slot for a standby satellite. By comparison, the model presented in

Section 3.4 would have 4, 608 states for a constellation with nine satellites.

Thus, in order to obtain qualitative results for their model, the authors resort

to Monte-Carlo simulation. The authors claim that their symbolic modeling of the

satellite constellation with the Petri nets allows broad sensitivity analysis for the

input parameters without having to change the model. Ereau and Saleman [15]

conclude by providing examples of outputs from their model. The Central Limit
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Theorem is applied to determine confidence intervals for mission availability over

the lifetime of the mission. They also present a figure showing the probability that

a given number of satellites are ordered during the evaluated time period.

The satellite replacement problem presented in this thesis is a multi-unit system

with stochastically deteriorating components. Under normal conditions, satellites are

not repairable and must be replaced. A large portion of the optimal replacement

literature deals with determining maintenance times and finally replacement of re-

pairable systems in order to minimize cost or maximize availability. Much of this lit-

erature cannot be directly applied to finding replacement policies for non-repairable

systems. However, several models from the optimal replacement literature were re-

viewed that could be applied to satellites. Much of this literature concerned the use

of renewal theory and was more closely aligned with the modeling of a single satellite

system. Literature regarding the optimal replacement policy for multi-unit systems

typically used dynamic programming to evaluate the systems.

The work by Gal [19], Ben-Ari and Gal [7], and Gal [20] addressed multi-unit

systems, but found only an approximation to the optimal policy. The goal of this

research is to analytically model the satellite constellations and to find a provably

optimal replacement policy to minimize the expected total cost of maintaining the

constellation. Flynn et al. [17], Chung and Flynn ([10], [11]) and Flynn and Chung

[18] simplify the system by only considering the critical components. They assume

that if any of these critical components fail, the system also fails. This differs from

the problem addressed here in that, when an active satellite fails, the constellation

is degraded, but still capable of providing some usefulness so long as at least one

satellite remains operational.

The work by Jacobs et al. [23] and Ereau and Saleman [15] model satellite

constellations. Hansen [21] addresses modeling satellite subsystems which has some

similarities to the modeling of satellite constellations. All three of these articles use

2-11



Monte-Carlo simulation to analyze their models. A provably optimal replacement

policy cannot be found by this method.

This thesis uses Markov decision processes (which are solved as stochastic dy-

namic programming problems) to provide a general analytical model to find optimal

replacement policies for satellite constellations which minimize the expected total

cost of maintaining the constellation. Markov decision processes are used to solve

the models because the provably optimal replacement policy can be found in this

way. Moreover, the resulting policy vector can be easily implemented by a deci-

sion maker. A review of Markov decision processes is provided at the beginning of

Chapter 3.
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3. Formal Model Description

The problem, as discussed in Chapter 1, is to find the optimal replacement

policy which minimizes the expected total cost (monetary and opportunity costs)

of maintaining a satellite constellation. A policy meeting these criteria balances

the need to have a fully operational satellite constellation, capable of fulfilling its

intended mission, with the need to limit the funding required to maintain the con-

stellation. The optimal replacement policy can be found analytically by applying

finite-horizon Markov decision processes. A review of Markov decision processes is

presented next to provide a framework for the satellite replacement problem.

3.1 A Review of Markov Decision Processes

Mine and Osaki [30] define a Markov decision process as “a sequential deci-

sion process on a discrete-time Markov chain” where a discrete-time Markov chain

(DTMC) is a stochastic process with specific properties. Kulkarni [26], page 16,

defines a stochastic process {Xn, n ≥ 0} to be a DTMC with state space S, where

Xn is the state of the system at time n, if for all n ≥ 0, Xn ∈ S and the Markov,

or memoryless, property holds (i.e. the history of the process is contained in the

current state of the system, so that only the current state of the system needs to

be considered). A DTMC transitions from state to state at discrete time points. A

sample path showing how a DTMC might transition is shown in Figure 3.1. The

state to which the process transitions is determined by the transition probabilities.

The state transitions are determined by the system being modeled (state transitions

which are not possible for a given system have transition probabilities equal to zero).

The possible states and the transition probabilities determine how the system evolves

over time and are also dependent on the system being modeled.

Puterman [35] states that Markov decision processes are “also referred to as

stochastic dynamic programs or stochastic control problems.” White [39], page 1,

3-1



0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
n

Xn

Figure 3.1 Possible DTMC sample path.

adds that the essential objective of Markov decision processes is to determine which

of the possible actions is optimal for each state. This review of Markov decision pro-

cesses is divided into three parts. The first part discusses the formulation of a Markov

decision process model. The second part addresses optimality criteria for Markov

decision processes. The final section covers the backward induction algorithm and

linear programming formulations of a finite-horizon Markov decision processes. This

review follows, in large part, from the excellent treatment by Puterman [35].

3.1.1 Formulation of a Markov Decision Process

Puterman [35], pages 17-22, clearly lays out the components of a Markov de-

cision process model whose formulation includes defining the decision epochs and

periods, the states and action sets, the rewards and transition probabilities, the

decision rules, and the policies.

A finite-horizon model where decisions are made at discrete time points is

used to solve the problem. The discrete time points at which decisions are made

are referred to as decision epochs. Time is divided into periods with decision epochs
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representing the beginning of each period. The set of decision epochs is denoted

T ≡ {1, 2, ..., N} where N < ∞ indicates the time frame is of a finite-horizon. At

each decision epoch, the model will be in one of a number of possible states and a

decision must be made concerning the course of action to follow.

States represent all of the possible scenarios in which the the system can be

observed. The set of all possible states is known as the state space. Labelling the

states by the integers s = 1, 2, ..., K, the state space is denoted as S ≡ {s1, s2, ..., sK}.

At each decision epoch in which the system is found to be in state s, a decision maker

must choose an action a, where actions are labelled by the integers a = 1, 2, ..., L

from the set of actions that are available while the system in state s. The set of

actions available while in state s is denote as As. The number of actions L available

in any state s is dependent on that state s and need not be the same for all s. The

set of actions available in state s is denoted as As ≡ {as,1, as,2, . . . , as,L} where as,m

is the mth possible action while in state s. For each action chosen by the decision

maker, there is a corresponding reward (or cost) for making that decision.

In general, the reward a decision maker achieves for choosing action a ∈ As

in state s at decision epoch t is denoted as rt(s, a). In the case where the rewards

remain the same throughout all time periods, the notation can be shortened to

r(s, a). Rewards are real-valued and may be positive or negative. They may be

considered as income when positive and as cost when negative. In finite-horizon

Markov decision process models, no decision is made at the final decision epoch N

because a decision made at decision epoch N would not be implemented as decision

epoch N marks the end of the time horizon being evaluated. The reward at the

final decision epoch is a function of only the state and is denoted rN(sN). When

analyzing a finite-horizon model, the final decision epoch N works to summarize the

results of the previous decision. The final reward, rN(s), is sometimes referred to as

the salvage value because this is the value of the final state of the system at the end

of the time frame being evaluated. Prior to the final decision epoch, the state of the
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system at the next decision epoch is based on the current state of the system, the

decision made by the decision maker, and the transition probabilities.

A transition probability is the probability that the system moves from state s

to another specified state at the time of the next decision epoch given action a ∈ As

was chosen. Transition probabilities are denoted as pt(·|s, a) where (·) represents the

state to which the system transitions, given the system is in state s and action a is

chosen. In the case where the transition probabilities remain the same throughout

all time periods, the notation can be shortened to p(·|s, a). For models presented

here, it is assumed that
∑

j∈S

pt(j|s, a) = 1, (3.1)

although Puterman [35], page 20, does discuss models where this equality is not

required.

Decision rules define the procedure used to select the actions for each state

at each decision epoch. Decision rules can be either deterministic or stochastic and

either Markovian or non-Markovian [35], page 21. Of the different combinations of

the characteristics, history-dependent randomized policies ΠHR are the most gen-

eral [35], page 21. When decision rules are deterministic, actions are selected with

certainty. When decision rules are randomized an action is selected randomly, ac-

cording to a specified probability distribution, from the set of available actions for

that state. Markovian decision rules rely only on the current state of the system.

This follows from the Markov property that states the probabilistic behavior of the

future of the process depends only on the current state of the process [26], page

16. In this sense, the history of the process is contained in the current state of the

process. History-dependent decision rules depend on the past history of the system

as represented by all of the previous states and actions.

In this work, decision rules will be deterministic and Markovian. Markovian

deterministic policies ΠMD are a subset of history-dependent randomized policies
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[35], page 22. Puterman, [35], page 89, shows that deterministic decision rules lead

to optimal policies and therefore randomized decision rules will not be considered

here. Deterministic Markovian decision rules are functions, dt(s) : S → As, where

s ∈ S, dt(s) ∈ As, which determine the the action chosen whenever the system is in

state s at decision epoch t.

Defining a policy is the final step in formulating a Markov decision process. A

policy π is a sequence of the decision rules used, π = (d1, d2, ...dN−1). A policy that

uses the same decision rule for all decision epochs, dt = d, ∀ t is called a stationary

policy.

In summary, Markov decision processes are composed of decision epochs and

periods, states and action sets, rewards and transition probabilities, decision rules,

and policies. The models presented herein are finite-horizon models, i.e., there is a

finite number of discrete decision epochs. The decision epochs occur at the begin-

ning of each period. States represent the different conditions in which the system

can be observed. For each state that the system can assume, there is a set of actions

from which a decision maker can choose. These actions, along with the transition

probabilities, determine which state the system will be in at the next decision epoch.

There is a reward associated with the selection of each action. A reward can be

interpreted as either income or cost and results from the selection of a particular

action. Decision rules specify how that action can be chosen and policies specify

which action is chosen throughout the time horizon under consideration. The de-

cision epochs, states, action sets, rewards, and transition probabilities make up a

Markov decision process. The combination of these components combined and an

optimality criterion is known as a Markov decision problem.

3.1.2 Optimality Criteria

In order to determine an optimal policy for a Markov decision process, there

must be a means by which to compare policies to determine an ordering. Markov
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decision process models are stochastic models, therefore the policies (e.g. π =

(d1, d2, ...dN−1)) are vectors of random variables. Because policies are vectors of

random variables, stochastic ordering is required of these vectors.

The following notation will aid in the discussion of stochastic ordering and

policy comparison. Let Rt denote the random reward received in time period t when

t < N and let RN denote the reward of the final decision epoch or the salvage

value [35], page 74. Normally, for t < N the rewards are independent of the time

period and the subscript t is dropped for stationary rewards. R denotes the set of all

real numbers, and Rn denotes all n-dimensional vectors of real values. The vector

R ≡ (R1, . . . , RN) ∈ Rn denotes a random sequence of rewards. Finally, < denotes

the set of all possible reward sequences.

For a pair of random variables it is said that the random variable U is stochas-

tically greater than the random variable V if

P{V > t} ≤ P{U > t}, ∀ t ∈ R. (3.2)

A random vector U = (U1, . . . , Un) is stochastically greater than a random vector

V = (V1, . . . , Vn) if

E[f(V1, . . . , VN )] ≤ E[f(U1, . . . , UN)], ∀ f : RN → R (3.3)

where the expectation is finite and the partial ordering on Rn is maintained, such

that vi ≤ ui for i = 1, . . . , N and f(v1, . . . , vN) ≤ f(u1, . . . , uN) [35], page 75.

According to Puterman [35], page 77, when using stochastic ordering to com-

pare two policies π and ν the inequality

Eπ[f(R1, . . . , RN)] ≥ Eν [f(R1, . . . , RN )] (3.4)
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must hold for a large class of functions f which may not be representative of the

decision maker’s tolerance for risk. The issue of risk is raised because a decision

chosen, based solely on maximizing the expected value, may seem more risky to

a decision maker when compared to another decision with a lower expected value.

For example, Clemens and Reilly [12], page 529, present a game similar to the

following. Suppose there are two possible decisions, decision A and decision B.

Each decision has two possible outcomes with each outcome having a probability of

0.5. The possible outcomes of decision A are gains of $1 and $100, which results in

an expected gain of $50.50. The possible outcomes of decision B are gains of $40

and $60, which results in an expected gain of $50. If maximizing the expected value

was the only concern decision A should be chosen. However, some people would

think decision A is riskier than decision B because choosing decision B guarantees a

gain of at least $40 with a chance for more, but decision A only guarantees a gain of

$1. Therefore, it may be desirable to consider risk along with expected value when

evaluating decisions. According to Bertsekas [8], pages 4 and 8, expected utility theory

can be used to apply mathematical methods for analyzing decision problems when

the decision maker is able to rank order, by preference, the probability distribution

of each possible outcome.

Puterman [35], page 77, states that requiring Equation (3.4) to only hold for

a specified function allows utility theory to provide a useful means of policy com-

parison. A utility function, Ψ(·), is a real-valued function representing a decision

maker’s preference for elements in a set W . If the decision maker prefers v over

w this implies Ψ(v) ≥ Ψ(w). Also, if Ψ(v) ≥ Ψ(w), this implies that the decision

maker prefers v over w. Thus, this is an if-and-only-if relationship. If the decision

maker has no preference between v and w then Ψ(v) = Ψ(w). Using utility Ψ(·) all

of the elements in set W can be compared. Describing techniques for determining

utility functions is beyond the scope of this work. The interested reader is referred

to Fishburn [16] and Keeney and Raiffa [25].
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If the elements ofW are allowed to represent the outcomes of a random process

then, according to Puterman [35], page 77, the “expected utility provides a total

ordering on equivalence classes of outcomes.” The expected utility for a discrete

random variable Y is given by

E(Ψ(Y )) =
∑

y∈W

Ψ(y)P{Y = y}. (3.5)

Let (ρ1, . . . , ρN) represent a realization of the reward process and let P π
< denote

the probability distribution on the set of rewards. Then for finite-horizon Markov

decision process models with discrete state spaces the expected utility of a policy π

can be represented as

Eπ[Ψ(R)] =
∑

(ρ1,...,ρN )∈<

Ψ(ρ1, . . . , ρN)P
π
<{(ρ1, . . . , ρN)}. (3.6)

When using expected utility it is clear the decision maker prefers policy π to policy

ν if

Eπ[Ψ(R1, . . . , RN)] > Eν [Ψ(R1, . . . , RN)]. (3.7)

The models presented herein assume linear additive utility which is given by

Ψ(ρ1, . . . , ρN) =
N
∑

i=1

ρi. (3.8)

Linear additive utility is used because as pointed out by Puterman [35], pages 77 and

78, such utilities represent the preferences of a decision maker that is risk neutral

and indifferent to the timing with which the rewards are received.

Let vπ
N(s) be the expected total reward over the decision-making horizon when

policy π is used and the system begins in state s. Then the expected total reward
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for a deterministic Markov policy is given by

vπ
N(s) ≡ Eπ

s

{

N−1
∑

t=1

rt(st, dt(st)) + rN(sN)

}

. (3.9)

Now that the expected total reward has been defined, the optimal policy, based

on that expected total reward, is established. For a model where reward is maxi-

mized, the policy with the largest expected total reward is desired and is denoted as

π∗. This optimal policy π∗ is found when (cf. [35], page 79)

vπ∗

N (s) ≥ vπ
N(s), s ∈ S

for all policies π ∈ ΠHR.

The value of a Markov decision problem, v∗N , for the maximization case, where

sup represents the supremum and max represents the maximum, is given by

v∗N(s) ≡ sup
π∈ΠHR

vπ
N(s), s ∈ S, (3.10)

or

v∗N(s) ≡ max
π∈ΠHR

vπ
N(s), s ∈ S, (3.11)

when the value of the supremum is attained in Equation (3.10), such as when each

Ast
is finite [35], page 79. The logic remains the same for the minimization case with

infimum replacing supremum and minimum replacing maximum.

The expected total reward of an optimal policy π∗ is the same as the value of

the Markov decision problem and thus satisfies

vπ∗

N (s) = v∗N(s), s ∈ S. (3.12)
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Markov decision processes are nothing more than stochastic dynamic program-

ming problems. Dynamic programming makes use of a fundamental recursion to

efficiently calculate a result. To perform this recursion, in the context of Markov

decision processes, the expected total reward of a fixed policy must first be defined.

Let uπ
t denote the total expected reward obtained by implementing policy π at the

decision epochs t, t+1, . . . , N−1 [35], page 80. For a Markovian deterministic policy,

uπ
t when t < N is given by

uπ
t (st) = Eπ

st

{N−1
∑

n=t

rn(sn, dn(sn)) + rN(sN)

}

(3.13)

= rt(st, dt(st)) +
∑

j∈S

pt(j|st, dt(st))u
π
t+1(j). (3.14)

The difference between uπ
t (s) and vπ

N(s) defined above in Equation (3.9) is that u
π
t (s)

only includes rewards from decision epoch t forward, whereas vπ
N(s) includes rewards

for the entire future [35], page 80.

3.1.3 Solution Methods

The expected total reward vπ
N can be computed by inductively evaluating uπ

t

using Puterman’s [35], page 80, Finite Horizon Policy Evaluation Algorithm.

Finite Horizon Policy Evaluation Algorithm (for fixed π ∈ ΠMD)

1. Set t = N and uπ
N(sN) = rN(sN).

2. If t = 1, stop, otherwise goto Step 3.

3. Substitute t− 1 for t and compute uπ
t (st) by

uπ
t (st) = rt(st, dt(st)) +

∑

j∈S

pt(j|st, dt(st))u
π
t+1(j). (3.15)

4. Return to Step 2.
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Optimality equations provide a basis for determining optimal policies and for

the maximization case are given by

ut(st) = sup
a∈Ast

{

rt(st, a) +
∑

j∈S

pt(j|st, a)ut+1(st, a, j)

}

(3.16)

for t = 1, . . . , N − 1, and the boundary condition

uN(sN) = rN(sN) (3.17)

when t = N . When the supremum in Equation (3.16) is attained, the supremum

operation can be replace with the maximum as follows

ut(st) = max
a∈Ast

{

rt(st, a) +
∑

j∈S

pt(j|st, a)ut+1(st, a, j)

}

. (3.18)

The optimality equations reduce to the policy evaluation equations, Equation

(3.14) or Equation (3.15), when the supremum of all of the actions in state st is

replaced by the action specified by the policy being evaluated.

According to Puterman, [35] page 84, the optimality equations are fundamental

to Markov decision theory because of the following properties:

Property A: The solutions to the optimality equations provide the optimal return

values from period t to N .

Property B: The optimality equations determine if a policy is optimal. If the

expected total reward of policy π for periods t onward satisfy the optimality

equations for t = 1, . . . , N , then the policy is optimal.

Property C: The optimality equations provide an efficient procedure for determin-

ing optimal return functions and policies.
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Property D: The optimality equations can be used to determine structural prop-

erties of optimal return functions and policies.

The above properties are very important to the study of Markov decision pro-

cesses. A proof of the properties is beyond the scope of this thesis, although the

interested reader is directed to Puterman [35], page 84.

Puterman [35], page 92, presents backward induction as an efficient method

for solving finite-horizon discrete-time Markov decision process problems. Puterman

[35], page 92, also states that for stochastic problems the enumeration and evaluation

of all policies is the only way to find the solution. The Backward Induction Algorithm

presented below generalizes the policy evaluation algorithm.

Backward Induction Algorithm

1. Set t = N and u∗
N(sN) = rN(sN)∀ sN ∈ S.

2. Substitute t− 1 for t and compute u∗
t (st) for each st ∈ S by

u∗
t (st) = max

a∈Ast

{

rt(st, a) +
∑

j∈S

pt(j|st, a)u
∗
t+1(j)

}

. (3.19)

Set

A∗
st,t
= argmax

a∈Ast

{

rt(st, a) +
∑

j∈S

pt(j|st, a)u
∗
t+1(j)

}

(3.20)

where argmaxa∈Ast
returns the set of actions (e.g. {a1,1, a1,3}) which attain

the maximum value of the elements evaluated.

3. If t = 1, stop. Otherwise return to Step 2.

The Backward Induction Algorithm is employed to find the optimal policies for the

models presented in this thesis.

For completeness, it should be noted that it is also possible to formulate the

problem as a linear program. Derman and Klein [14], Ross [36], and White [39]

all discuss linear programming formulations for finite-horizon Markov decision pro-
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cesses. The following formulations are based on the treatments of linear programming

formulations given by White [39], pages 113-114, and Ross [36], pages 40-42.

The problem of finding the maximum expected total reward can be formulated

as

min
u

{

λu =
∑

s∈S

λsu1(s)

}

(3.21)

subject to

ut(s) ≥ max
a∈Ast

{

rt(st, a) +
∑

j∈S

pt(j|st, a)ut+1(j)

}

, (3.22)

1 ≤ t ≤ N − 1,∀ s ∈ S

uN(s) = 0, t = N, ∀ s ∈ S (3.23)

where λ is a vector whose length is the number of states in the system. The elements

of λ represent the probability of the system beginning in state s ∈ S. The decision

variables ut, t = 1, 2, . . . , N are unrestricted in sign. Recall from Equation (3.14) that

ut(s) represents the total expected reward through time periods t, t + 1, . . . , N − 1.

Equations (3.22) and (3.23) correspond to the optimality equations and boundary

condition, respectively.

The formulation can be equivalently stated as

min
u

{

λu =
∑

s∈S

λsu1(s)

}

(3.24)

subject to

ut(s) ≥ rt(st, a) +
∑

j∈S

pt(j|st, a)ut+1(j), (3.25)

1 ≤ t ≤ N − 1, ∀s ∈ S,∀ a ∈ A
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uN(s) = 0, t = N,∀ s ∈ S (3.26)

In some cases, such as the problem solved by this research, where expected total

cost is being minimized the problem can be formulated with the objective function

written as follows:

min
u

{

N
∑

t=1

∑

s∈S

ut(s)

}

. (3.27)

In these cases, the value of the objective function is ignored and solution is found by

looking at the value of the decision variables.

By using the linear programming formulations, the optimal (minimum) costs at

each decision epoch may be found. These values are the same as those found when

solving the problem using Markov decision processes. Unfortunately, solving the

problem via linear programming does not provide the policy that must be followed

to obtain these optimal values. For this reason it is desirable to use Markov decision

processes to solve the problem. Being able to find solutions to the problem via

linear programming provides a useful check on the results of the stochastic dynamic

programming solution. In addition, the linear programming formulation allows for

sensitivity analysis to be extended to an analysis of the reward (cost) coefficients of

the problem.

3.2 Assumptions for the Satellite Constellation Models

Various assumptions regarding satellites and their operation are employed in

order to model the system as a Markov decision process, to prevent state space

explosion of the models, and to produce tractable solutions. Chapter 5 discusses

the relaxation of these assumptions in future work; however, in these initial models

the assumptions assist in focusing attention on the solution method rather than

attempting to provide a perfectly realistic model. The following two assumptions

are required to model satellite constellations as presented in Sections 3.3 and 3.4.
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• Satellite are assumed to be independently subject to failure. This implies that

such events as solar proton events and geomagnetic storms do not affect the

failure of the satellites. Satellite failures are rarely caused by such events,

therefore this assumption can be considered to have minimum impact.

• The assumption of exponentially distributed satellite lifetimes greatly simpli-

fies the modeling of satellite constellations. Exponential lifetimes enable the

computation of conditional probabilities involving the interval reliability of the

satellites. Barlow and Proschan [6], page 18, suggest that it is valid to assume

exponentially distributed lifetimes for complex systems with many critical, in-

dependently operating components as the number of components and time

in operation increases. Given the complexity and criticality of subsystems it

assumed reasonable to employ this assumption.

In an effort to present the methodology and analysis in a clear and understand-

able manner, the following additional assumptions were made. Though the following

are not rigid, they are employed in order to more easily demonstrate the analysis of

the model’s output.

• For the models presented herein, it is assumed that when a spare satellite is

ordered, it will be available during the next time period. In reality, it can

sometimes take many months to build a satellite. Molnau, Olivieri, and Spalt

[31] state that for traditional space vehicle manufacturing it can typically take

18 months to build a satellite. For modern manufacturing processes, the time

between producing multiple satellites can be reduced to two months. This

assumption simplifies the modeling of satellite constellations. Because satellite

lifetimes are relatively long in relation to the time it takes to build a new

satellite and the high reliability of launch boosters the likelihood that a new

satellite can be built prior to a recently replaced satellite needing replacement

is high. For example, many satellites currently have lifetimes of ten years or

more, but satellite production times are typically much shorter than this time
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period. The main effect of allowing satellite production to exceed three months

is that orders for replacement satellites would need to be place earlier.

• The models also assume that there will be at most one spare satellite for each

satellite considered an active part of the constellation. There could actually

be any number of spare satellites from none to multiple spare satellites per

active satellite. For example, a Lockheed Martin press release [37] states that

in January of 2001 there were 14 GPS satellites in storage. Allowing one spare

per active satellite should allow ample spare satellites to be kept on hand. It

should also provide a reasonable modeling bound for determining the state

space where the number of spare satellites is a factor in state definitions.

• Satellites are assumed to be either operational or non-operational. Most satel-

lites suffer from some degradation due the stresses of launch and the harsh

space environment. Yet these degraded satellites are still capable of perform-

ing some necessary functions required by the mission. For the purpose of this

study, these satellites, even though degraded, are considered operational until

the degradation reaches the point at which the mission under evaluation can no

longer be performed at a satisfactory level. When a satellite reaches this level

of degradation, for the purpose of this model and the mission being evaluated

it is considered non-operational. Secondary payloads or missions need to be

evaluated separately.

• While performing policy evaluation, the models rely on the assumption that

the costs involved are known with certainty. It is reasonable that the cost of

building a satellite, the cost of storing a satellite, and the cost of launching a

satellite are fairly well known. Conversely, the penalty cost which is assessed

when the constellation is not fully operational is not as obvious. There exist

a directly proportional relationship between the penalty cost and the opera-

tional level of the satellite constellation. As the penalty cost rises, so will the

operational level of the satellite constellation. This relationship exists because
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as the penalty cost rises the penalty charges can be avoided by making more

frequent satellite replacements in order to prevent outages. Buffa and Miller [9]

pages 142-143, present the idea of service levels wherein penalty cost, cpenalty,

can be expressed as some function of the service level, ls where

cpenalty = f(ls). (3.28)

Here f is a utility function as described in Section 3.1.2. It is beyond the scope

of this work to determine the utility function for the penalty cost. A nominal

value for the penalty cost is chosen in Chapter 4 and sensitivity analysis is

performed on that value.

• For the purpose of this research the models assume that the cost of each satellite

is constant throughout the time- horizon being evaluated. The purpose of this

assumption is to focus attention on the methodology and to make analysis of

the model outputs more straightforward. Often a contract will be made to

build several satellites over a period of time. These contracts allow the buyer

to obtain lower prices for each individual satellite. For example, Jane’s Space

Directory [5], page 573, reports that for GPS Navstar Block 2R satellites there

was a design and development cost of 119 million dollars and that the first 20

satellites after that would cost a total of 575 million dollars. The total cost

of development and production for the first 20 satellites is 694 million dollars.

The average cost per satellite is 34.7 million dollars. Such long term contracts

lock in the cost of satellites and allow the average price to be used as a constant

cost for modeling.

• Each satellite is assumed to be launched separately, although in some cases

multiple satellites could be launched from the same booster. This is especially

evident when launching multiple satellites into the same orbital plane. For

example, Iridium satellites had two satellites per launch on Long March 2
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rockets, five satellites per launch on Delta 2 rockets, and seven satellites per

launch on Proton K/DM rockets [22] pages 223, 121, and 292. Assuming only

one satellite per launch is acceptable because this is the most frequent case.

It also provides a conservative estimate of the cost. With the exception of

smaller, lighter weight satellites such as Iridium and Globalstar, most satellites

are launched individually [22], pages 65-66, 107-110, 196-200, 222-223, 288-292,

and 364-376.

• The launch costs per satellite are also assumed to be constant. Again, the main

reason to hold launch cost throughout the time horizon under evaluation is to

focus attention on the methodology and make analysis of model output easier

to interpret. This is assumed because each satellite is assumed to be launched

separately. If multiple satellites were allowed to be launched together, then a

different booster may be required that has different costs. For example, Long

March 2, Delta 2 and Proton rockets were among the launchers used to launch

Iridium satellites [22], pages 223, 109, and 292. Delta 2 launches boosted five

Iridium satellites per launch into orbit at a cost of 50 to 60 million dollars [22],

page 98. Proton launches put seven Iridium satellites per launch into orbit at

a cost of 90 to 100 million dollars, [22] page 284. Depending on the number

of satellites launched at the same time and booster required many different

launch cost could be possible for the satellites. By considering each satellite

to launched separately the launch cost can be assumed constant and system

modeling is simplified. Again, this would be a conservative estimate of costs.

• On-orbit spare satellites are not considered in the models. Many constellations

do not make use of on-orbit spares due to the added cost and the extra wear

to the satellite caused by additional exposure to the space environment. For

this reason and to keep the state space of the problem small, on-orbit spares

are not considered.
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• The models assume that launch facilities and launchers are available for all

launches so that launches occur at the prescribed times. The Delta 2 rocket

has demonstrated a peak launch rate of 12 launches per year and it is estimated

that the Delta 2 has a maximum surge launch rate of 15 launches per year [22],

page 99. This type of limitation exist for all launchers, for example, the Proton

rocket is currently being produced at a maximum rate of 15 per year [22], page

285. The relatively long satellite lifetimes make it unlikely that large numbers

of launches will be needed each year, under normal circumstances, to maintain

a constellation.

• The models (as presented) do not assume any budgetary constraints. For the

purpose of finding the optimal policy for maintaining the satellite constellation

with minimum expected total cost this is a fair assumption. The optimal pol-

icy provides the minimum expected total cost over the time horizon evaluated.

A policy derived under such an assumption is useful in creating a budget or

requesting funds for the maintenance of the constellation. Having derived this

optimal replacement policy places strong impetus on following the policy be-

cause following any other course of action will have a higher minimum expected

total cost.

However, if the decision is made to limit the funding for maintaining a satellite

constellation during any time period, it is easy to implement budgetary con-

straints. By implementing budgetary constraints, the new policy will result in

a minimum expected cost that is greater than or equal to the unconstrained

model. To implement the budgetary constraints the actions that result in an

immediate monetary reward (cost) exceeding the allowable budgeted amount

can be ignored as if these actions did not exist. In this way, an optimal policy

can be found that minimizes the total expected cost of maintaining the satellite

constellation while still satisfying budgetary constraints.
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• This model only takes into account the cost directly associated the building,

storage, and launch of a satellite, as well as the opportunity cost of a satellite

failure. This model does not include the costs of maintaining a ground system

with which to operate the satellite.

3.3 Single-unit Model

This section presents the formulation for a model with a single satellite. In

this case, the number of satellites in the constellation is M = 1. As presented in

Section 3.1.1, it is necessary to define decision epochs, periods, states, action sets,

rewards, transition probabilities, decision rules, and policies.

The single satellite model is a finite time horizon model such that T = {1, 2, ..., N}

where N < ∞. The states of the single satellite model represent the states of the

stochastic process {(Xt, St) : t ∈ T} where Xt represents the whether the satel-

lite is operational and Sn represents if a spare satellite is available. For example,

(X5 = 1, S5 = 0) means that at t = 5 the satellite is operational (X5 = 1) and there

is not a spare satellite available (S5 = 0). The state space for the model contains

four states and is denoted as S = {s1, s2, s3, s4}. The states are defined in Table 3.1.

Table 3.1 Single satellite model state definitions.

State Definition
s1 the satellite is working and no replacement satellite is available
s2 the satellite is working and a replacement satellite is available
s3 the satellite is not working and a replacement satellite is not available
s4 the satellite is not working and a replacement satellite is available

The set of possible actions for each state depend explicitly on the state. When

the system is in state s the actions from set As are available for selection. The

actions for the four states of this model are defined in Table 3.2.

Transition probabilities for the model are defined using the following notation:
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Table 3.2 Single satellite model action definitions.

Action Set Action Definition
A1 a1,1 Let the system run without intervention

a1,2 Order a replacement satellite
A2 a2,1 Let the system run without intervention

a2,2 Replace the satellite with the available spare
a2,3 Replace the satellite and order a new replacement

A3 a3,1 Let the system run without intervention
a3,2 Order a replacement satellite

A4 a4,1 Let the system run without intervention
a4,2 Replace the satellite with the available spare
a4,3 Replace the satellite and order a new replacement

Interval reliability: The interval reliability of a satellite, denoted by Rsat, is the

probability that the satellite will survive until the next decision epoch. A

derivation of interval reliability is given in Proposition 3.1.

Probability of a successful launch: The probability of a successful launch, de-

noted as Psl, is the probability that a satellite is launched and becomes oper-

ational. This probability includes the event of a successful launch into orbit,

any transfer maneuvers into the final orbit, and successful completion of initial

check-out procedures until the satellite is declared operational.

The transitions for this model are shown pictorially in the state transition

diagram of Figure 3.2.

Proposition 3.1 derives the interval reliability when satellite lifetimes are dis-

tributed exponentially. The memoryless property of the exponential distribution is

exploited in solving the problem using Markov decision processes.

Proposition 3.1 If W is the exponentially distributed lifetime of a satellite with

mean lifetime λ and τ1 and τ2 ∈ [0,∞), where τ2 = τ1 +∆t (∆t is the length of one
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Figure 3.2 State transition diagram.

time period), then

P{W > τ2|W > τ1} = e−λ∆t, ∆t > 0. (3.29)

Proof. The proof of Proposition 3.1 follows.

P{W > τ2|W > τ1} = P{W > τ1 +∆t|W > τ1}

=
P{W > τ1 +∆t,W > τ1}

P{W > τ1}

=
P{W > τ1 +∆t}

P{W > τ1}

=
(1− (1− e−λ(τ1+∆t)))

(1− (1− e−λτ1))

=
e−λ(τ1+∆t)

e−λτ1

= e−λ∆t
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Table 3.3 summarizes the transition probabilities for the single-unit model.

Table 3.3 Single satellite model transition probabilities.

Current State Probability Value
s1 pt(s1|s1, a1,1) Rsat

pt(s3|s1, a1,1) 1−Rsat

pt(s2|s1, a1,2) Rsat

pt(s4|s1, a1,2) 1−Rsat

s2 pt(s2|s2, a2,1) Rsat

pt(s4|s2, a2,1) 1−Rsat

pt(s1|s2, a2,2) Psl

pt(s3|s2, a2,2) 1− Psl

pt(s2|s2, a2,3) Psl +Rsat × (1− Psl)
pt(s4|s2, a2,3) (1−Rsat)× (1− Psl)

s3 pt(s3|s3, a3,1) 1
pt(s4|s3, a3,2) 1

s4 pt(s4|s4, a4,1) 1
pt(s1|s4, a4,2) Psl

pt(s3|s4, a4,2) 1− Psl

pt(s2|s4, a4,3) Psl

pt(s4|s4, a4,3) 1− Psl

In this model all of the rewards are actually costs. The costs used here are

defined as follows:

Satellite Costs: Satellite costs, denoted as csat, are all of the costs involved in

purchasing a new satellite.

Holding Costs: Holding costs, denoted as chold, are the costs associated with stor-

ing a satellite prior to its launch.

Launch Costs: Launch costs, denoted as claunch, include all of the costs associated

with the launching of a satellite. These costs include the launch booster, the

shipment of the launch booster, launch range support, and etc.

Penalty Costs: Penalty cost, denoted as cpenalty, are the costs associated with not

keeping each satellite in the constellation at an operational level.
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The rewards for the single satellite model are shown in Table 3.4.

Table 3.4 Single satellite model rewards.

Current State Reward Definition
s1 rt(s1, a1,1) 0

rt(s1, a1,2) csat
s2 rt(s2, a2,1) chold

rt(s2, a2,2) claunch
rt(s2, a2,3) claunch + csat

s3 rt(s3, a3,1) cpenalty
rt(s3, a3,2) csat + cpenalty

s4 rt(s4, a4,1) cpenalty + chold
rt(s4, a4,2) claunch + cpenalty
rt(s4, a4,3) claunch + csat + cpenalty

The minimum expected total cost u∗
t (·) is defined for state st by

u∗
t (st) = max

a∈Ast

{

∑

j∈S

pt(j|st, a)u
∗
t+1(st, a, j) + rt(st, a)

}

(3.30)

where the cost are defined with negative values and the boundary value

uN(sN) = rN(sN). (3.31)

3.4 Multi-unit Model

This section presents the formulation of the multi-unit model. A system of

multiple satellites is by definition a constellation. HereM , the number of satellites in

the system, is two or more, (M ≥ 2). As presented in Section 3.1.1, it is necessary to

define decision epochs, periods, states, action sets, rewards, transition probabilities,

decision rules, and policies. This model has a finite time horizon with the decision

epochs occurring at the beginning of each time period, so that T = {1, 2, ..., N}

where N <∞.
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The states of the model can be defined by making use of following observa-

tions. Each state is made up of two pieces of information; the satellites which are

operational and the number of spare satellites currently available. Thus the system

is a stochastic process {(Xt, St) : t ∈ T} where Xt represents which of the satellites

are operational at decision epoch t and St represents the number of spare satellites

available at decision epoch t. For example, the case (X2 = 5, S2 = 3) means at

decision epoch t = 2, X2 = 5 might mean for example that satellites 1, 2, and, 4 are

operational and S2 = 3 means three spare satellites are available.

For any multi-unit system there is a set of cases representing each possible

combination of satellites working and not working, the Xt’s. This set includes cases

ranging from all of the satellites working to none of the satellites working. For

this model it is important to distinguish between individual satellites so that the

case with satellites 1 and 2 working is distinct from the case with satellites 1 and 3

working. Each of these cases represent distinct states of the system. Each possible

value of Xt is paired with each possible value of St (the number of spare satellites

available) in order to form the states of the model. If the maximum number of spares

satellites allowed in the system is the same as the number of satellites in the system,

M , then there are M +1 states corresponding to each value of Xn. There are M +1

states because there is a state representing each possible value of St, 0, 1, . . . ,M .

The total number of states in the model is clearly dependent on M . With

M ≥ 2 the total number of states in a system with M satellites can be found using

the equation
{

M
∑

j=0

MCj

}

× (M + 1) (3.32)

where MCj represents the number of combinations on M objects taken j at a time.

Combinatorial growth of the state space is clearly present.

Actions for the model are dependent on the state of the system and are defined

by applying the following rules. A set of actions is determined for each system
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state by comparing the current state of the system to the system state that has M

operational satellites and a full complement ofM spare satellites. Actions range from

maintaining the current system status to moving the system towards the most robust

system state (e.g. the state with M operational satellites and M spare satellites).

The simplest and most basic action is to allow the system to continue running

with intervention. The next type of action to consider is the purchase of spare satel-

lites until there areM spares available. For example, if there are currently k satellites

on hand, there are M −k actions corresponding to purchase of spare satellites in the

quantities 1, 2, . . . ,M − k. The final class of actions to consider is what to do with

spare satellites currently on hand. These satellites can be used to replace any of the

satellites in the model. There are actions representing every possible combination of

replacement using the replacement satellites that are currently available. Whether

specific satellites are operational or failed is not taken into account when defining

the actions. Each possible action that follow the set of rules is enumerated. The

algorithm will select which actions are necessary to minimize the expected total cost.

The number of actions for a state with k replacement satellites available at the

beginning of the time period is determined using the following equations:

M − k + 1, M ≥ 2, k = 0, (3.33)

and

{

k
∑

j=1

(MCj)× (M − k + 1 + j)

}

+M − k + 1, M ≥ 2, k ≥ 1. (3.34)

The transition probabilities for the multi-unit model use the same definitions

presented as Section 3.3 with an extended subscript denoting which satellite is being

referred to (e.g. Rsat1 and PslM). Extending the subscript for the interval reliability

allows the different satellites to have different lifetimes. Being able to allow different
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satellite lifetimes is useful because upgrades are often made to replacement satellites

during their construction. Extending the subscript for the probability of a successful

launch is also useful because launching satellites into different orbits causes different

stresses during the launch. These variations can lead to different launch reliabilities.

The reliability parameters for the multi-unit problem are computed in the same

manner as those of the single-unit model. However, the transition probabilities for

the multi-unit problem are much more complex than those of the single-unit problem

due to the possibility of multiple events leading to the transition from some state sc

to some state sd. To compute the transition probabilities, each event that can lead to

a transition from state sc to state sd when action ac,n is chosen must be determined.

The transition probability, pt(sd|sc, ac,n), is found by summing the probabilities of

each of these events given they are independent. For example, assume there is a

constellation consisting of two satellites, A and B, both of which are operational. If

the decision is made to replace satellite A there are two possible events that can take

place and system still have both satellites operational at the next decision epoch.

First, if there is a successful launch that replaces satellite A and satellite B continues

to function the both satellites will be operational. Secondly, if the launch to replace

satellite A is unsuccessful, but satellite the original satellite A continues to function,

as does satellite B, then both satellites will still be considered operational. Thus,

the probability of each event occurring must be determined. Because the events are

independent, the probability of each event is summed to determine the transition

probability from the state with both satellites operational, back to the state when

both satellites are operational, when the decision is replace satellite A.

Determining the rewards for the multi-unit model is straight forward. The

rewards for the multi-unit system are actually costs and use the same cost defini-

tions as used by the single-unit model. For decisions resulting in the purchase of a

satellite the cost of a satellite, csat, is assessed. This cost is assessed for each satellite

purchased at that decision epoch or as a result of that action. Holding costs, chold,

3-27



are assessed whenever there is a satellite available for replacement at the beginning

of the time period (i.e. at the decision epoch). This charge is assessed for each

satellite in holding status. Launch costs, claunch, are assessed for each satellite that

is launched during the time period. Penalty costs, cpenalty, are assessed for each

satellite that is not operational at the beginning of the period.

The minimum expected total cost u∗
t (·) is defined for state st by

u∗
t (st) = max

a∈Ast

{

∑

j∈S

pt(j|st, a)u
∗
t+1(st, a, j) + rt(st, a)

}

(3.35)

where the costs are defined with negative values and the boundary value

uN(sN) = rN(sN). (3.36)

This chapter presented a review of Markov decision processes. The review

covered the components required to formulate a Markov decision process, optimality

criteria, and solution methods for determining optimal policies. Following the review,

the chapter discusses the assumptions made about satellite constellations in order to

solve the problem using Markov decision processes. After addressing these concerns,

models for a single-unit problem and a multi-unit problem are given. In Chapter

4, numerical examples using notional data are given for both the single-unit and

multi-unit problems. Sensitivity analysis of the notional values for satellite lifetime

and costs follows the examples.
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4. Numerical Results and Analysis

This chapter presents numerical results and analysis of the models using no-

tional data. The numerical results are based on the single-unit model presented in

Section 3.3 and the multi-unit model presented in Section 3.4. Moreover, a sensitiv-

ity analysis of model parameters, such as the mean satellite lifetimes and the penalty

costs, is provided.

4.1 Single-unit Example

A single-unit example is first provided to demonstrate the means by which

to find an optimal replacement policy using Markov decision processes. The same

techniques used to find a solution for the single-unit problem are then applied to a

more complicated multi-unit problem.

The single-unit example uses three months (or one quarter) of the fiscal year

as the time periods. The decision epochs are defined to be T = 1, 2, . . . , N where

N = 40 quarters which represents a 10-year time horizon. The states for this model

are that the single satellite is operating or failed and whether a spare replacement

satellite is available. These are identical to the states given in Table 3.1 and are

reproduced in Table 4.1 for convenience.

Table 4.1 Single satellite model state definitions.

State Definition
s1 the satellite is working and no replacement satellite is available
s2 the satellite is working and a replacement satellite is available
s3 the satellite is not working and a replacement satellite is not available
s4 the satellite is not working and a replacement satellite is available

The actions for the single-unit model relate to replacing the satellite, ordering

a new replacement, or allowing the system to run without intervention. The actions

for the model were given in Table 3.2 and are reproduced in Table 4.2 for convenience.
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Table 4.2 Single satellite model action definitions.

Action Set Action Definition
A1 a1,1 Let the system run without intervention

a1,2 Order a replacement satellite
A2 a2,1 Let the system run without intervention

a2,2 Replace the satellite with the available spare
a2,3 Replace the satellite and order a new replacement

A3 a3,1 Let the system run without intervention
a3,2 Order a replacement satellite

A4 a4,1 Let the system run without intervention
a4,2 Replace the satellite with the available spare
a4,3 Replace the satellite and order a new replacement

A few reliability parameters must first be determined in order to specify the

transition probabilities for the model. The values chosen in this thesis are of a

notional nature, but are selected to be representative of real world systems where

possible. Because satellite lifetimes have been assumed to be exponentially dis-

tributed only one parameter, the mean lifetime of the satellite, must be specified.

Jane’s Space Directory [5], page 573, reports that GPS Navstar Block 2R satellites

have a design life of 10 years. The GPS Block 2R design life is the notional value

assumed for mean satellite lifetime in this example. The mean satellite lifetime is

represented by λ−1 where λ−1 = 10 years or 40 quarters. After λ has been specified

the interval reliability can be determined. As shown in Proposition 3.1, the interval

reliability is given by e−λ∆t where ∆t is the amount of time included in the interval.

In this case, ∆t amounts to three months or one time period, therefore ∆t = 1.

The final probability that needs to be specified is the probability of a successful

launch. Recall from Section 3.3 that the probability of a successful launch is defined

as the probability of a satellite being launched and becoming operational. Jane’s

Space Directory [5], page 263, states that the Delta 2 rocket, the primary launch

vehicle of the GPS satellite, has a vehicle success rate of 99 percent. A notional

value of 95 percent is used for the probability of a successful launch. This value is

determined by considering the joint event that the launch is successful and that the
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satellite does not fail during the checkout phase. These reliability parameters are

summarized in Table 4.3.

Table 4.3 Single satellite model reliability parameters.

Reliability Notation Numerical Value
Mean lifetime of the satellite λ−1 40.0000
Interval reliability of the satellite Rsat 0.9753
Probability of a successful launch Psl 0.9500

Once the reliability parameters have been specified the transition probabilities

can be determined. Table 4.4 lists the definitions of the transition probabilities and

their values.

Table 4.4 Single satellite model transition probabilities.

Current State Probability Definition Value
s1 pt(s1|s1, a1,1) Rsat 0.9753

pt(s3|s1, a1,1) 1−Rsat 0.0247
pt(s2|s1, a1,2) Rsat 0.9753
pt(s4|s1, a1,2) 1−Rsat 0.0247

s2 pt(s2|s2, a2,1) Rsat 0.9753
pt(s4|s2, a2,1) 1−Rsat 0.0247
pt(s1|s2, a2,2) Psl 0.9500
pt(s3|s2, a2,2) 1− Psl 0.0500
pt(s2|s2, a2,3) Psl +Rsat × (1− Psl) 0.9988
pt(s4|s2, a2,3) (1−Rsat)× (1− Psl) 0.0012

s3 pt(s3|s3, a3,1) 1 1.0000
pt(s4|s3, a3,2) 1 1.0000

s4 pt(s4|s4, a4,1) 1 1.0000
pt(s1|s4, a4,2) Psl 0.9500
pt(s3|s4, a4,2) 1− Psl 0.0500
pt(s2|s4, a4,3) Psl 0.9500
pt(s4|s4, a4,3) 1− Psl 0.0500

Before the total reward for each action can be determined some basic reward

values must first be specified. The cost of satellites varies greatly depending on

the mission. Table 4.5 is produced from a table presented by Apgar, Bearden, and

Wong [2] who list the average unit cost in fiscal year 2000 dollars for various types

4-3



of satellites. The cost of a GPS (Block 2) satellite is given to be 57 million fiscal

year 2000 dollars in Table 4.5. The notional value of 50 million dollars is used as a

representative value for the cost of a satellite.

Table 4.5 Satellite cost in FY00 $M (from Apgar, Bearden, and Wong.)

Mission Satellite Average Unit Costs (FY00 $M)
Communications Intelsat VIII 133

TDRSS 126
DSCS IIIB 114

Navigation GPS (Block 2) 57
Missile Warning DSP 314
Weather GOES 84

DMSP 88

According to Jane’s Space Directory [5], page 573, the Government Accounting

Office (GAO) estimated in 1990 that it would cost $200, 000 annually for each GPS

satellite kept in storage. This value is used for as the nominal value for holding cost

will assumed to $50, 000 per quarter. Sensitivity analysis of this value will be studied

to determine its affect on the minimum expected total cost.

As stated in Section 3.2, a Delta 2 rocket costs from 50 to 60 million dollars.

The nominal value for the the cost of launch used in the example is 55 million dollars.

The nominal value for the penalty cost is chosen to be 50 million dollars. Given this

is a notional value, sensitivity analysis will be performed in the following section.

The basic reward (cost) values are summarized in Table 4.6.

Table 4.6 Single satellite model costs.

Cost Value
csat $50, 000, 000
chold $50, 000
claunch $55, 000, 000
cpenalty $50, 000, 000
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Once the basic reward values have been specified, the reward values for each

action can be determined. The total reward for each model action are given in Table

4.7.

Table 4.7 Single satellite model reward values.

Current State Reward Definition Value
s1 rt(s1, a1,1) 0 $0

rt(s1, a1,2) csat $50, 000, 000
s2 rt(s2, a2,1) chold $50, 000

rt(s2, a2,2) claunch $55, 000, 000
rt(s2, a2,3) claunch + csat $105, 000, 000

s3 rt(s3, a3,1) cpenalty $50, 000, 000
rt(s3, a3,2) csat + cpenalty $100, 000, 000

s4 rt(s4, a4,1) cpenalty + chold $50, 050, 000
rt(s4, a4,2) cpenalty + claunch $105, 000, 000
rt(s4, a4,3) cpenalty + claunch + csat $155, 000, 000

After specifying all of the reliability, cost, and reward parameters the prob-

lem can be solved using the Backward Induction Algorithm presented of Section

3.1.3. The algorithm was programmed using the mathematical computing package

MATLABr. Thirty runs of the model were made to assess the run time charac-

teristics. Relevant statistics for are listed in Table 4.8. The runs were conducted

on a Dellr Inspiron 8100 with a 1 gigahertz Intelr Pentiumr III processor, 256

megabytes of RAM, and using the Microsoftr Windows 2000 Professional operating

system.

Table 4.8 Single-unit run time characteristics.

Execution Statistic Time (seconds)
Mean 0.1142
Mode 0.1100

Minimum 0.1100
Maximum 0.1210

Standard Deviation 0.0050
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The policy derived from this algorithm is shown in Table 4.9. The table lists

which action should be selected, depending on what state the system is in during

time epochs 1, . . . , 40, in order to minimize the expected total cost. For example, if

the system is in state s4, during any of the first 19 time epochs, action A4,3 (replace

the satellite and order a new replacement) should be chosen. If the system is in state

s4 during the time epochs 20 through 38, then action A4,2 (replace the satellite with

the available spare) should be chosen. If in state s4 during time epoch 39, action

A4,1 (let the system run without intervention) should be chosen. No decisions are

made in time epoch 40 as this is the last epoch of the time horizon. After a decision

is made it is implemented at the beginning of the next time period. There is no time

following decision epoch 40 for this example, so a decision made at time 40 would

not be implemented.

Table 4.9 Single satellite policies.

Epoch s1 s2 s3 s4 Epoch s1 s2 s3 s4
1 2 1 2 3 21 1 1 2 2
2 2 1 2 3 22 1 1 2 2
3 2 1 2 3 23 1 1 2 2
4 2 1 2 3 24 1 1 2 2
5 2 1 2 3 25 1 1 2 2
6 2 1 2 3 26 1 1 2 2
7 2 1 2 3 27 1 1 2 2
8 2 1 2 3 28 1 1 2 2
9 2 1 2 3 29 1 1 2 2
10 2 1 2 3 30 1 1 2 2
11 2 1 2 3 31 1 1 2 2
12 2 1 2 3 32 1 1 2 2
13 2 1 2 3 33 1 1 2 2
14 2 1 2 3 34 1 1 2 2
15 2 1 2 3 35 1 1 2 2
16 2 1 2 3 36 1 1 2 2
17 2 1 2 3 37 1 1 2 2
18 2 1 2 3 38 1 1 2 2
19 1 1 2 3 39 1 1 2 1
20 1 1 2 2 40 0 0 0 0
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Table 4.10 shows the minimum expected cost for the following the policy of

Table 4.9. Note that the minimum expected cost is dependent upon the initial state

of the system.

Table 4.10 Single satellite minimum expected cost.

Initial State Value ($M)
s1 243.358
s2 188.408
s3 553.442
s4 403.810

4.2 Analysis of the Single-unit Example

For the notional example presented the rewards (costs) are represented as no-

tional values. When evaluating an actual constellation the rewards (costs) are esti-

mates of the actual values. Because the values of the rewards are approximate, it is

desirable to investigate the impact of these values on the minimum expected total

cost. This sensitivity analysis is performed by varying a parameter, such as the mean

satellite lifetime or the cost of a launch, and plotting the minimum expected total

cost for each of the parameter values evaluated. The plots for a single parameter

show a curve for each possible initial system state. As in Table 4.10, the minimum

expected total cost is dependent on the initial state.

The first parameter evaluated is the mean satellite lifetime. Recall from Table

4.3 that a mean satellite lifetime of 40 quarters was assumed. In Figure 4.1 the mean

satellite lifetime is varied from 1 quarter (3 months) to 80 quarters (20 years). The

graph shows that as the mean satellite lifetime increases, the minimum expected

total cost decreases, as expected. It also shows that as the mean satellite lifetime

approaches 80 quarters, the decrease in the minimum expected total cost “flattens

out.” For this example, if mean satellite lifetimes are significantly shorter than the

10-year design life, the minimum expected total cost would increase dramatically.
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However, if the mean satellite lifetimes are longer than the 10-year design life, the

minimum expected total cost will decrease, but not significantly. For example, when

the mean satellite lifetime is 24 quarters (6 years) or longer, the rate of decrease of

the minimum expected total cost is less than 10 million dollars for each additional

quarter of satellite mean lifetime. The the mean satellite lifetime is 40 quarters (10

years - the satellite design life) the rate of decrease of the minimum expected total

cost is approximately three-and-a-half million dollars for each additional quarter of

satellite mean lifetime. The real-world trend has been for satellites to last for longer

than their design life. Such analysis may also be useful in establishing the design

reliability of a system when it is being planned.
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Figure 4.1 Varying the mean satellite lifetime over a 10-year time horizon.

Another parameter of interest is the penalty cost. Figure 4.2 shows how varying

the penalty cost from zero to 100 million dollars per quarter affects the minimum

total expected cost for a 10-year time horizon. The graph shows a very low minimum
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expected total cost when the penalty cost is close to zero because a very low penalty

cost implies there is a very low need or desire to maintain the satellite.
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Figure 4.2 Varying the penalty cost over a 10-year time horizon.

When evaluating the case with a very low penalty cost the algorithm determines

it is cheaper to pay the penalty cost than to maintain the satellite. The leftmost

points of the plot in Figure 4.3 illustrate this point. This graph shows the minimum

expected total cost, as well as its individual components, the expected satellite cost,

the expected launch cost, the expected holding cost, and the expected penalty cost

when following the optimal policy. To aide in reading the graph, these costs one

are displayed for only state. State 3, the case with no operational satellites and

no spares available, is chosen because this case is equivalent to populating a new

constellation. When the penalty cost ranges from zero through four million dollars,

the expected launch cost is zero. When the penalty cost is five million dollars,

the expected launch cost jumps to 61.792 million dollars and the expected penalty
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cost drops to 65.354 million dollars. With a penalty cost of four million dollars the

expected penalty cost is 156 million dollars. For this example, once the penalty cost

reaches a relatively small value (5 million dollars) compared to the cost of buying

and launching a satellite (105 million dollars combined), the algorithm determines

it is less expensive to maintain the satellite than to pay the penalty costs. When

evaluating a new satellite constellation, if the penalty cost is so low that it is cheaper

to pay the penalty than to maintain the constellation, then the constellation may

not be needed. Such a case suggests evaluating different alternatives for achieving

the mission, such as accomplishing the mission by putting a secondary payload on

some other constellation.
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Figure 4.3 Costs over a ten year time horizon for the single-unit example.

As the the penalty cost rises the algorithm must balance the cost of maintaining

the satellite and paying the penalty cost for not being able to perform the mission.

The minimum expected total cost rises as the penalty cost rises for two reasons.
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First, whenever a penalty must be paid the cost is higher. A second reason is that

more money will be spent in buying, holding, and launching satellites in order to

prevent paying the higher penalty cost than otherwise would have been spent on

maintaining the satellite if the penalty cost was lower.

When the penalty cost changes from 42 to 43 million dollars the graph of

Figure 4.3 shows a significant decrease in the expected penalty cost and significant

increase in the expected cost of satellites. With penalty cost of 42 million dollars or

less the expected holding cost is zero dollars, which implies there no satellites should

be held in storage for this range of penalty cost to have the highest probability of

achieving the minimum expected total cost. When the penalty cost is 43 million

dollars the holding cost increase to 1.162 million dollars indicating that satellites

should be held in storage to achieve the minimum expected total cost. The expected

cost of satellites increases at this point because the satellite being held in storage

must now be purchased. The expected penalty cost drops at this point because if

the satellite fails, a replacement can be launched in the next time period. To replace

a failed satellite if there is no satellite in storage, a replacement must be ordered in

one time period and launched in the next.

Figure 4.4 graphs the minimum expected total cost when the launch cost is

varied from zero to 150 million dollars. The graph shows that as the launch cost

increase so does the minimum total expected cost of maintaining the satellite, as

expected. The costs increase linearly and straight-forward to interpret. A graph of

the minimum expected total cost when varying the cost of a satellite also increases

linearly. Because of the uncomplicated nature of this graph it is not presented here.

The minimum total expected cost when varying the holding cost from zero to

100 million dollars is shown in Figure 4.5. The graph shows that for this example,

the holding cost has almost no effect the minimum total expected cost. The holding

cost is insignificant because it is small relative to the cost of purchasing and launch-

ing a satellite as well as the penalty cost for failing to maintain the satellite. By

4-11



0

100

200

300

400

500

600

0 20 40 60 80 100 120 140
Launch Cost ($M)

M
in

im
um

 E
xp

ec
te

d 
To

ta
l C

os
t (

$M
)

State 1
State 2
State 3
State 4

Figure 4.4 Varying the launch cost over a 10-year time horizon.

taking advantage of the ability to store satellites the penalty cost can be minimized.

In this example, if the satellite failed and no replacement was available, a replace-

ment would have to be ordered and then the replacement could be launched in the

next time period. This would result in paying a penalty for two time periods. If a

replacement satellite was available when the satellite failed the replacement could

be launched immediately given the earlier assumption that launch vehicles and fa-

cilities are always available. In this case, a penalty is only paid for one time period.

Clearly, the size of the penalty cost and the duration of the penalty period effects

the minimum expected total cost. Analysis of the model allows a policy for the use

of spare satellites for the constellation to be determined.
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Figure 4.5 Varying the holding cost over a 10-year time horizon.

4.3 Multi-unit Example

The multi-unit example shows how the model works for a constellation of

satellites. The decision epochs are defined to be T = 1, 2, . . . , N where N = 40

quarters which represents a 10-year time horizon. The states were described in

Section 3.4 where each states specifies which satellites are operational and the number

of spare satellites available. The states are listed in Table 4.11 for the case where

there are M = 3 satellites in the constellation.

The action sets for the three satellite constellation problem are defined using

the rules from Section 3.4. Following those rules, states sharing an equal number

of spare satellites available also share the set of actions which can be performed in

one of those states. For example, states s1, s5, s9, s13, s17, s21, s25, and s29 each

have zero spare satellites available at the beginning of the time period, and therefore

each states has the same set of available actions. The actions for the three satellite
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Table 4.11 Three satellite problem state definitions.

State Working Satellites Available Spares State Working Satellites Available Spares
s1 1, 2, 3 0 s17 1 0
s2 1, 2, 3 1 s18 1 1
s3 1, 2, 3 2 s19 1 2
s4 1, 2, 3 3 s20 1 3
s5 1, 2 0 s21 2 0
s6 1, 2 1 s22 2 1
s7 1, 2 2 s23 2 2
s8 1, 2 3 s24 2 3
s9 1, 3 0 s25 3 0
s10 1, 3 1 s26 3 1
s11 1, 3 2 s27 3 2
s12 1, 3 3 s28 3 3
s13 2, 3 0 s29 None 0
s14 2, 3 1 s30 None 1
s15 2, 3 2 s31 None 2
s16 2, 3 3 s32 None 3

constellation are summarized in four tables (Tables ?? - ??) representing the four

levels of spare satellites available, 0, 1, 2, 3.

Table 4.12 lists the actions applicable to states with no spare satellites available

at the decision epoch. The action sets summarized in this table are A1, A5, A9, A13,

A17, A21, A25, and A29. These action sets contain only a few actions because there

are no spare satellites available with which to perform replacement actions.

Table 4.12 Three satellite problem action set for states with no spares.

Action Definition
as,1 Let the system run without intervention
as,2 Order one spare satellite
as,3 Order two spare satellites
as,4 Order three spare satellites

Table 4.13 lists the actions applicable to states with one spare satellite available

at the decision epoch. The action sets summarized in this table are A2, A6, A10, A14,

A18, A22, A26, and A30. Note that the replacement of each different satellite requires

a separate action.
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Table 4.13 Three satellite problem action set for states with one spare.

Action Definition
as,1 Let the system run without intervention
as,2 Order one spare satellite
as,3 Order two spare satellites
as,4 Replace satellite 1
as,5 Replace satellite 1 and order one spare satellite
as,6 Replace satellite 1 and order two spare satellites
as,7 Replace satellite 1 and order three spare satellites
as,8 Replace satellite 2
as,9 Replace satellite 2 and order one spare satellite
as,10 Replace satellite 2 and order two spare satellites
as,11 Replace satellite 2 and order three spare satellites
as,12 Replace satellite 3
as,13 Replace satellite 3 and order one spare satellite
as,14 Replace satellite 3 and order two spare satellites
as,15 Replace satellite 3 and order three spare satellites

Table 4.14 lists the actions applicable to states with two spare satellites avail-

able at the decision epoch. The action sets summarized in this table are A3, A7, A11,

A15, A19, A23, A27, and A31. This set of actions can call for the replacement of no

satellites, a single satellite, or two satellites. Each possible combination of satellite

replacement must be represented by a separate action.

Table 4.15 lists the actions applicable to states with three spare satellites avail-

able at the decision epoch. The action sets summarized in this table are A4, A8, A12,

A16, A20, A24, A28, and A32. This set of actions allows for the replacement of any

number of the satellites and must have separate actions representing each replace-

ment strategy.

The transition probabilities are determined using the definitions provided in

Section 3.4. For this example, the reliability parameters are the same as for the

single-unit example and are extended to apply to all satellite in the constellation.

These reliability parameters and the reliability probability values are summarized in

Table 4.16 where λm, Rsatm, and Pslm refer to the values specific to satellite m. For
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Table 4.14 Three satellite problem action set for states with two spares.

Action Definition
as,1 Let the system run without intervention
as,2 Order one spare satellite
as,3 Replace satellite 1
as,4 Replace satellite 1 and order one spare satellite
as,5 Replace satellite 1 and order two spare satellites
as,6 Replace satellite 2
as,7 Replace satellite 2 and order one spare satellite
as,8 Replace satellite 2 and order two spare satellites
as,9 Replace satellite 3
as,10 Replace satellite 3 and order one spare satellite
as,11 Replace satellite 3 and order two spare satellites
as,12 Replace satellites 1 and 2
as,13 Replace satellites 1 and 2 and order one spare satellite
as,14 Replace satellites 1 and 2 and order two spare satellites
as,15 Replace satellites 1 and 2 and order three spare satellites
as,16 Replace satellites 1 and 3
as,17 Replace satellites 1 and 3 and order one spare satellite
as,18 Replace satellites 1 and 3 and order two spare satellites
as,19 Replace satellites 1 and 3 and order three spare satellites
as,20 Replace satellites 2 and 3
as,21 Replace satellites 2 and 3 and order one spare satellite
as,22 Replace satellites 2 and 3 and order two spare satellites
as,23 Replace satellites 2 and 3 and order three spare satellites

this example each satellite uses the same parameter and reliability values although

it is possible for different satellites to have different values.

The transition probabilities for the multi-unit example are computed as de-

scribed in Section 3.4. Due to complexity of the system and the number of state

transitions, extreme care must be taken to identify each event that can cause a tran-

sition from a state c to a state d (c, d ∈ S). The probability of all such events is

summed to determine the transition probability from state c to state d. For this

example, the transition probabilities are too lengthy to be enumerated here, but an

example of these transition probabilities are given in Table 4.17. This table shows

the transition probabilities for choosing action a3,15.
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Table 4.15 Three satellite problem action set for states with three spares.

Action Definition
as,1 Let the system run without intervention
as,2 Replace satellite 1
as,3 Replace satellite 1 and order one spare satellite
as,4 Replace satellite 2
as,5 Replace satellite 2 and order one spare satellite
as,6 Replace satellite 3
as,7 Replace satellite 3 and order one spare satellite
as,8 Replace satellites 1 and 2
as,9 Replace satellites 1 and 2 and order one spare satellite
as,10 Replace satellites 1 and 2 and order two spare satellites
as,11 Replace satellites 1 and 3
as,12 Replace satellites 1 and 3 and order one spare satellite
as,13 Replace satellites 1 and 3 and order two spare satellites
as,14 Replace satellites 2 and 3
as,15 Replace satellites 2 and 3 and order one spare satellite
as,16 Replace satellites 2 and 3 and order two spare satellites
as,17 Replace satellites 1, 2 and 3
as,18 Replace satellites 1, 2 and 3 and order one spare satellite
as,19 Replace satellites 1, 2 and 3 and order two spare satellites
as,20 Replace satellites 1, 2 and 3 and order three spare satellites

The multi-unit problem uses the same reward parameters used by the single-

unit example, which are given in Table 4.6. The reward values are also too lengthy

to be enumerated here, but an example is given in Table 4.18. This table provide

the rewards for all of the possible actions for state 3.

This problem was solved using the Backward Induction Algorithm programmed

in MATLABr. Table 4.19 lists execution time characteristics for 30 runs of the

program. The runs were conducted on a Dellr Inspiron 8100 with a 1 gigahertz

Intelr Pentiumr III processor, 256 megabytes of RAM, and using the Microsoftr

Windows 2000 Professional operating system.

The policy derived from the algorithm is shown in Table 4.20. The table

specifies which action should be selected depending on the system state during time
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Table 4.16 Three satellite problem reliability values.

Reliability Notation Numerical Value
Mean lifetime of the satellite λ−1

1 40
Mean lifetime of the satellite λ−1

2 40
Mean lifetime of the satellite λ−1

3 40
Interval reliability of the satellite Rsat1 0.9753
Interval reliability of the satellite Rsat2 0.9753
Interval reliability of the satellite Rsat3 0.9753
Probability of a successful launch Psl1 0.9500
Probability of a successful launch Psl2 0.9500
Probability of a successful launch Psl3 0.9500

epochs 1, . . . , 40 in order to minimize the total expected cost. For example, if the

system is in state s31, during any of the first 26 time epochs, action A31,14 (replace the

satellites 1 and 2 and order two new replacements) should be chosen. If the system

is in state s31 during the time epochs 27 through 35, then action A31,13 (replace the

satellites 1 and 2 and order a new replacement) should be chosen. If the system is

in state s31 during the time epochs 36 through 37, then action A31,12 (replace the

satellites 1 and 2 and do not order a replacement) should be chosen. If in state s31

during time epochs 38 or 39, action A31,1 (let the system run without intervention)

should be chosen. No decisions are made in time epoch 40 as there are no time

periods evaluated after this epoch. Decisions are implemented at the beginning of

the next time period and any decision made at time epoch 40 for this example would

not be evaluated.

Table 4.21 shows the minimum expected total cost for the following the policy

of Table 4.20. Note that the minimum expected cost is dependent upon the initial

state of the system.

4.4 Analysis of the Multi-unit Example

The analysis of the multi-unit example closely follows the analysis the of the

single-unit example. For satellite cost, launch cost, and holding cost the graphs of
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Table 4.17 Transition probabilities for action a3,15.

Probability Definition Value
pt(s4|s3, a3,15) (Psl1 × Psl2 ×Rsat3) + ((1− Psl1)×Rsat1 × Psl2 ×Rsat3) 9.7290× 10−1

+(Psl1 × (1− Psl2)×Rsat2 ×Rsat3)
+((1− Psl1)× (1− Psl2)×Rsat1 ×Rsat2 ×Rsat3)

pt(s8|s3, a3,15) (Psl1 × Psl2 × (1−Rsat3)) 2.4629× 10−2

+((1− Psl1)×Rsat1 × Psl2 × (1−Rsat3))
+(Psl1 × (1− Psl2)×Rsat2 × (1−Rsat3))
+((1− Psl1)× (1− Psl2)×Rsat1 ×Rsat2 × (1−Rsat3))

pt(s12|s3, a3,15) (Psl1 × (1− Psl2)× (1−Rsat2)×Rsat3) 1.2025× 10−3

+((1− Psl1)× (1− Psl2)×Rsat1 × (1−Rsat2)×Rsat3)
pt(s16|s3, a3,15) ((1− Psl1)× (1−Rsat1)× Psl2 ×Rsat3) 1.2025× 10−3

+((1− Psl1)× (1− Psl2)× (1−Rsat1)×Rsat2 ×Rsat3)
pt(s20|s3, a3,15) (Psl1 × (1− Psl2)× (1−Rsat2)× (1−Rsat3)) 3.0442× 10−5

+((1− Psl1)× (1− Psl2)×Rsat1

×(1−Rsat2)× (1−Rsat3))
pt(s24|s3, a3,15) ((1− Psl1)× (1−Rsat1)× Psl2 × (1−Rsat3)) 3.0442× 10−5

+((1− Psl1)× (1− Psl2)× (1−Rsat1)
×Rsat2 × (1−Rsat3))

pt(s28|s3, a3,15) (1− Psl1)× (1− Psl2)× (1−Rsat1) 1.4864× 10−6

×(1−Rsat2)×Rsat3

pt(s32|s3, a3,15) (1− Psl1)× (1− Psl2)× (1−Rsat1) 3.7628× 10−8

×(1−Rsat2)× (1−Rsat3)

the minimum expected total cost increase linearly and follow the same patterns as

the graphs presented in Section 4.2. For these reasons, analysis of these parameters

is not presented here.

The mean satellite lifetime for the multi-unit example is also varied from 1

quarter (3 months) to 80 quarters (20 years). For the multi-unit example, the mini-

mum expected total cost is the equal for certain initial states. For example, all states

with two operational satellites and no available spares (e.g. states s5, s9, s13) all have

the same minimum total expected cost. The optimal policy requires different actions

for each state, but the cost are equivalent. Figure 4.6 shows the minimum expected

total cost for 12 initial states. Figure 4.7 shows the minimum expected total cost for

12 other initial states. Each graph follows the same basic pattern so it is sufficient to
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Table 4.18 Three satellite reward values example.

Reward Definition Value
rt(s3, a3,1) 2× chold $100, 000
rt(s3, a3,2) 2× chold + csat $50, 100, 000
rt(s3, a3,3) chold + claunch $55, 050, 000
rt(s3, a3,4) chold + claunch + csat $105, 050, 000
rt(s3, a3,5) chold + claunch + 2× csat $155, 050, 000
rt(s3, a3,6) chold + claunch $55, 050, 000
rt(s3, a3,7) chold + claunch + csat $105, 050, 000
rt(s3, a3,8) chold + claunch + 2× csat $155, 050, 000
rt(s3, a3,9) chold + claunch $55, 050, 000
rt(s3, a3,10) chold + claunch + csat $105, 050, 000
rt(s3, a3,11) chold + claunch + 2× csat $155, 050, 000
rt(s3, a3,12) 2× claunch $110, 000, 000
rt(s3, a3,13) 2× claunch + csat $160, 000, 000
rt(s3, a3,14) 2× claunch + 2× csat $210, 000, 000
rt(s3, a3,15) 2× claunch + 3× csat $260, 000, 000
rt(s3, a3,16) 2× claunch $110, 000, 000
rt(s3, a3,17) 2× claunch + csat $160, 000, 000
rt(s3, a3,18) 2× claunch + 2× csat $210, 000, 000
rt(s3, a3,19) 2× claunch + 3× csat $260, 000, 000
rt(s3, a3,20) 2× claunch $110, 000, 000
rt(s3, a3,21) 2× claunch + csat $160, 000, 000
rt(s3, a3,22) 2× claunch + 2× csat $210, 000, 000
rt(s3, a3,23) 2× claunch + 3× csat $260, 000, 000

present only one graph in order to illustrate various arguments regarding the plot.

Figures 4.6 and 4.7 show that, just as in the single-unit case, as the mean satel-

lite lifetime increases, the minimum expected total cost decreases. It holds for this

multi-unit example that the decrease in minimum expected total cost “flattens” out

as the mean satellite lifetime approaches 80 quarters or 20 years. When the satellite

mean lifetime reaches 42 quarters or 10.5 years, for each of the 32 possible starting

states, the rate of change for the minimum expected total cost is less than 10 million

dollars for every subsequent increase of one quarter to the mean satellite lifetime.

For this example, a 10 million dollar change is less than a 2.5 percent change to the

minimum expected total cost.
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Table 4.19 Multi-unit run time characteristics.

Execution Statistic Time (seconds)
Mean 13.7528
Mode 13.7600

Minimum 13.7190
Maximum 13.8500

Standard Deviation 0.0282
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Figure 4.6 Varying the mean satellite lifetime over a 10-year time horizon.

A graph of the minimum expected total cost for a 10-year time horizon as the

penalty cost is varied is shown in Figure 4.8. The penalty cost is varied from zero

to 100 million dollars per quarter. This plot only shows the values for 12 of the

initial states. Plots of the other initial states follow the pattern of this graph. Just

as in the single-unit example, the figure shows a very low minimum expected total

cost when the penalty cost is close to zero. When evaluating this case, the algorithm

determines it is less expensive to pay penalties than to purchase and launch satellites

to maintain the constellation. However, once the penalty cost reaches a relatively

small value compared to the cost of buying and launching a satellite, the algorithm
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Table 4.20 Multiple satellite policies.

State Policy
s1 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
s2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
s3 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
s4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
s5 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0
s6 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,

12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1, 1, 0
s7 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 0
s8 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 0
s9 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0
s10 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 0
s11 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 0
s12 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 0
s13 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0
s14 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 0
s15 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 0
s16 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0
s17 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 0
s18 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 1, 1, 0
s19 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 1, 1, 0
s20 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 1, 1, 0
s21 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 0
s22 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 1, 1, 0
s23 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 1, 1, 0
s24 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 0
s25 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 0
s26 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 1, 1, 0
s27 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,

12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1, 1, 0
s28 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 0
s29 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 0
s30 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 1, 1, 0
s31 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,

13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 1, 1, 0
s32 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,

18, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 1, 1, 0
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Table 4.21 Multiple satellite model minimum expected cost.

Initial State Value ($M) Initial State Value ($M)
s1 470.025 s17 880.282
s2 420.075 s18 784.181
s3 374.805 s19 688.217
s4 341.602 s20 638.267
s5 675.126 s21 880.282
s6 579.107 s22 784.181
s7 529.157 s23 688.217
s8 483.708 s24 638.267
s9 675.126 s25 880.282
s10 579.107 s26 784.181
s11 529.157 s27 688.217
s12 483.708 s28 638.267
s13 675.126 s29 1085.443
s14 579.107 s30 989.309
s15 529.157 s31 893.265
s16 483.708 s32 797.356

determines it is more advantageous to maintain the satellite than to pay the penalty

costs.

This chapter began with an example of a single-unit problem in order to demon-

strate the use of Markov decision processes. Tables 4.9 and 4.10 showed the minimum

expected total cost’s dependence on the initial state of the system for the time hori-

zon evaluated. Sensitivity analysis of problem parameters demonstrated the impact

these values made on the minimum expected total cost. Next, a multi-unit, or con-

stellation, example was given. Similar results and sensitivity analysis followed the

example. Chapter 5 presents a summary of this thesis, discusses insights gained

during the research, explains the contributions, and details future work in the area

of this thesis.
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Figure 4.7 Varying the mean satellite lifetime over a 10-year time horizon.
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Figure 4.8 Varying the penalty cost over a 10-year time horizon.
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5. Conclusions and Future Research

The primary objectives of this thesis were to create an analytical model of satel-

lite constellations, to find optimal replacement policies that minimize the expected

total cost of maintaining the constellations, and to study how changes to model pa-

rameters affect the policy and the minimum expected total cost. The importance of

analytically modeling satellite constellations via Markov decision processes is that

a provably optimal replacement policy can be derived. Knowing the optimal re-

placement policy aides a decision maker in making informed decisions regarding the

maintenance of a constellation. While following the policy does not guarantee that

the minimum cost is achieved, this course of action ideally has a higher likelihood

of achieving the minimum cost than any other strategy. Sensitivity analysis on the

model parameters provided a way to evaluate how the optimal value is affected by

changes to the problem parameters. If the optimal value changes dramatically with

small changes to a parameter, it will be important to ensure that accurate informa-

tion about the parameter is included in the model.

In order to determine an optimal replacement policy, an analytical model of

the satellite constellation was created and solved using Markov decision processes

(stochastic dynamic programming) to find the optimal replacement policy. The third

chapter provided a review of Markov decision processes, stated the assumptions made

in modeling the satellite constellations, and formulated models for single-unit and

multi-unit systems. A discussion of linear programming formulations extended the

review of Markov decision processes. Several assumptions about satellites and their

operation were made in order to model satellite constellations as Markov decision

processes and to avoid the problem of state space explosion. These assumptions are

generally mild, in that they do not greatly modify the characteristics of many of

the existing satellite constellations. The single-unit model was formulated for the

purpose of demonstrating Markov decision process modeling for a satellite constel-

5-1



lation. For the single-unit model it was possible to explicitly identify the states,

actions, transition probabilities, and rewards. This aided the understanding of the

multi-unit model. The multi-unit model was defined by presenting rules that were

used to determine the system states, actions, transitions probabilities, and rewards.

Equations for computing the number of states and the number of actions were pro-

vided to determine the size of the state space as a function of the number of satellites

in the constellation.

Chapter 4 specified model parameters for both single-unit and multi-unit ex-

amples. The examples of each problem were followed by sensitivity analysis of model

parameters. Model parameters were specified by determining realistic values from

actual space systems. The multi-unit example used the same parameter values as

the single-unit example. The parameter values were assumed to be identical for

satellite in the constellation. A constellation of three active satellites was assumed

for the multi-unit example. Analysis of both the single-unit and multi-unit exam-

ples included sensitivity analysis of the model parameters and interpretation of these

analyses.

The main contribution of this research was the development of an analytical

model used to determine the optimal replacement policy for satellite constellations.

This analytical model serves as a framework upon which a more detailed model can be

based. The use of an analytical model provides a provably optimal replacement policy

for the given assumptions and offers an alternative to potentially time-consuming

simulation. High resolution simulation modeling is often used to analyze various

policies for satellite constellations. However, simulation cannot prove the optimality

of a given policy. Policies found by the analytical methodology of this thesis can

be used to determine budgets for maintaining the constellation. Because the models

do not assume budgetary constraints, the policies found by using Markov decision

processes provide the minimum expected total cost over the entire time-horizon being

evaluated. Therefore, by considering the actions of the optimal policy for a given
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time period t, a realistic budgetary value can be derived. The sensitivity analysis

of the model parameters can be used to determine where small changes to model

parameters could have a large effect on the minimum expected total cost.

For the purpose of analytical tractability, several assumptions were employed

regarding the satellites and their operation. The model can be extended by relaxing

some of these assumptions. The first important assumption to be relaxed is that

of exponentially distributed satellite lifetimes. One alternative is to use phase-type

(PH) distributions to model the satellite lifetime distribution. PH-distributions can

be used to represent general distributions by the convolution of multiple exponential

distributions [1]. Well-known examples of PH-distributions include the Erlang and

Coxian distributions. The main feature of PH distributions that make them of value

in this context is that they maintain the Markovian (memoryless) property [24] and

are able to approximate any probability distribution. However, such approximations

come at a computational expense due the additional number of required system

states for the underlying Markov chain. Hence, accuracy must be balanced with this

expense.

The models assumed that a satellite is either operational or non-operational.

Allowing the level of the satellite’s health to be represented by several states would

more accurately represent real-world scenarios. The different states can hypothet-

ically represent the amount of remaining useful life for a satellite. Hence, if some

penalty cost is assessed for operating in a degraded state, the model could ideally

determine the degradation point at which satellites should be replaced to minimize

the expected total cost over the time-horizon evaluated. Increasing the number of

states representing the condition of a satellite greatly increases not only the state

space of the entire problem, but also the number of state transitions that must be

determined. The computational power and available memory are important consid-

erations in determining how many levels of satellite health should be represented.
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Allowing multiple satellites to be launched on a single launcher is another

possible improvement. However, the ability to do this depends on the satellite system

being evaluated. For example, it is unrealistic to think that multiple heavy satellites,

such as Milstar, could be launched on a single launcher. Relaxing this assumption

would be valid only for certain satellite systems. However, the model is robust

enough to be extended to such situations when appropriate.

Modeling the capability to have on-orbit-spare satellites is another possible

improvement. There are actually two distinct types of on-orbit-spares that could be

modeled. Hot spares would be activated and ready to perform the mission as soon

a the primary satellite could not longer do so. A cold spare would be in a standby

mode and would need to be activated in the event that the primary satellite could

no longer perform the mission. A hot spare would incur faster degradation than a

cold spare, but both would incur less degradation than an active satellite. Including

the use of on-orbit-spares would allow this capability to be evaluated to determine if

it was a cost effective measure to use. It is likely that on-orbit-spares would be used

when the penalty cost of a mission failure is very high.

This thesis suggested that the penalty cost should be determined through the

use of a utility or value function. Further work in area of determining the utility

of a satellite constellation is necessary to properly use this aspect of the model (cf.

[33]). Furthermore, the holding cost could be represented as a utility function. When

a satellite is built and held in storage, advances in technology and design are not

incorporated into the satellite prior to its launch unless costly retrofits are made.

These changes can improve the capabilities of the satellite and extend it’s lifetime.

Therefore, it would be more realistic to account for this opportunity cost in future

analyses.

Another generalization of the model is to allow the lead time for replacement

orders to be a random variable. This would allow the production time of a satellite

to span across multiple decision epochs. The production time for some satellites is
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longer than three months. This change would make the models more realistic by

requiring that replacement satellites be ordered before the expected failure of active

satellites. This may result in a replacement not being available when needed, or in

paying large holding costs for replacement satellite built well before the time they

are required.

Another area of study is the availability of launchers and launch facilities. Un-

der normal operating conditions, a sufficient number of launchers and launch facili-

ties are available to launch satellites into orbit given proper planning and scheduling.

These conditions are assumed to exist in the proposed models. In a surge period,

or when rapid replenishment of a constellation is required, this assumption is not

likely to hold true. The models presented here are only concerned with a single

constellation. An in-depth study of launcher and launch facility availability would

need to incorporate the priority given to a particular constellation to determine the

availability of resources to that constellation.

A major challenge during the course of this thesis was determining the scope

of this initial effort. The more detail incorporated into an analytical model increase

the state space of the problem. Determining the level of detail at which to model

satellite constellations required balancing the degree of reality in model outputs

and computational complexity of finding results. In order to show the value of an

analytical modeling approach sufficient problem assumptions were required to allow

the model to be presented in a clear manner. Relaxation of these assumptions is

fertile ground for future research of this problem.
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